MENU
首页» 人才团队» 创新团队» 作物耕作与生态» 首席_17» 首席:张卫建 - 中国农业科学院作物科学研究所

首席:张卫建 - 中国农业科学院作物科学研究所



 



姓  名: 张卫建  性 别: 男
职  称: 研究员
联系电话:010-62156856
电子邮箱:zhangweijian@caas.cn
个人网页:
课 题 组:农田生态与耕作制度
 

本人简历:
    张卫建,男,中国农业科学院作物科学研究所研究员,作物耕作与生态创新团队首席。1999年毕业于南京农业大学,获得农学博士学位。2001年至2003年在美国North Carolina State University,开展土壤生态博士后合作研究。2006年入选教育部“新世纪优秀人才”,现为“农业部保护性耕作专家组”、国务院学位办“学科评议组(作物学组)”成员。中国耕作制度学会副理事长、中国立体农业分会和中国农业生态专业委员会秘书长, The Crop Journal副主编。
研究方向:
    农田生态与耕作制度。
主要贡献:
    工作以来一直从事农田生态与耕作制度的科研与教学工作,在农田生态系统对气候变化的响应与适应、农田土壤碳氮循环、高产高效栽培、保护性耕作等领域取得了较好的研究进展。先后主持国家自然科学基金、国家“973计划”课题、国家粮食丰产科技工程、教育部优秀人才计划、公益性行业科技等项目20余项,多次参加国家重大科技计划规划、农业部科技发展质询和农学会学科建设规划等服务。主要成果发表在Nature、Global Change Biology、Plant and Soil等重要刊物上,其中第一或通讯作者论文100余篇,SCI论文30余篇。主编和参编高等院校教材和专著8部,获颁技术标准8项。获得国家技术专利6件,省部级科技进步一、二、三等奖各2项。近五年培养研究生15名,其中国际留学生3人,博士后5名。
获奖成果和荣誉称号:
    2006年获得教育部“新世纪优秀人才”称号。1999年“长江三角洲发达农区高效外向型种植模式研制及推广”获得教育部科技进步二等(9/22),2014年“春玉米密植高产与水热高效的栽培理论与技术”获得黑龙江省农业科技进步一等奖(2/20),2015年“水稻高产与稻田减排的耕层调控关键技术及应用”获得农业部中华农业科技奖二等奖(1/15)。
在研科研项目:
1.农田生态系统温室气体减排增效关键技术集成及示范,2015-2017,国家科技支撑计划,参加。
2.主要粮食作物丰产增效绿色种植技术,2015-2019,中国农业科学院科技创新工程,主持。
3.稻作区土壤培肥与丰产增效耕作技术,2016-2020,粮食丰产增效科技创新重点专项,主持。
主要论文和著作:
[1]Zhang,W., K. M. Parker, Y. Luo, S. Wan, L. L. Wallace and S . Hu. 2005. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11(2), 266-277
[2]Huang, S., Zhang, W. J*., Yu, X., Huang, Q. (2010). Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of southern China. Agriculture, Ecosystems & Environment, 138(1), 44-50.
[3]Rui, W., Zhang, W. J*.(2010). Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis. Agriculture, Ecosystems & Environment, 135(3), 199-205.
[4]Chen, C., Lei, C., Deng, A., Qian, C., Hoogmoed, W., Zhang, W. J*.(2011). Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965–2008. Agricultural and Forest Meteorology, 151(12), 1580-1588.
[5]Dong, W., Chen, J., Zhang, B., Tian, Y., Zhang, W. J*. (2011). Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 123(3), 259-265.
[6]Guo J., Zhang M., Zhang L., Bian X., Zhu J., Zhang W. J*. (2011). Responses of dissolved organic carbon and dissolved nitrogen in surface water and soil to CO2 enrichment in paddy field. Agriculture, Ecosystems and Environment, 140, 273–279.
[7]Chen, C., Qian, C., Deng, A., Zhang, W. J*.(2012). Progressive and active adaptations of cropping system to climate change in Northeast China. European Journal of Agronomy, 38, 94-103.
[8]Guo, J., Zhang, W. J*., Zhang, M., Zhang, L., Bian, X. (2012). Will elevated CO2 enhance mineral bioavailability in wetland ecosystems? Evidence from a rice ecosystem. Plant and soil, 355(1-2), 251-263.
[9]Kou, T. J., Zhu, P., Huang, S., Peng, X. X., Song, Z. W., Deng, A. X., Zhang, W. J*. (2012). Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil and Tillage Research, 118, 132-138.
[10]Huang S, Sun Y, Zhang W. J*.(2012). Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Climatic Change, 112, 847-858.
[11]Feng, J., Chen, C., Zhang, Y., Song, Z., Deng, A., Zheng, C., Zhang, W. J*.(2013). Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agriculture, Ecosystems & Environment, 164, 220-228.
[12]Song, Z. W., Guo, J., Zhang, Z., Kou, T., Deng, A., Zheng, C., Zhang, W. J*. (2013). Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of Northeast China. European Journal of Agronomy, 50, 66-74.
[13]Tian Y., Zheng C., Chen J., Chen C., Deng A., Song Z., Zhang B., Zhang W*. (2014) Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China. PLoS ONE 9(4): e95108. doi:10.1371/journal.pone.0095108.
[14]Chen X., Cui Z., Fan M., Vitousek P., Zhao M., Ma W., Wang Z., Zhang W., Yan X., Yang J., Deng X., Gao Q., Zhang Q., Guo S., Ren J., Li S., Ye Y., Wang Z., Huang J., Tang Q., Sun Y., Peng X. Zhang J., He M., Zhu Y., Xue J., Wang G., Wu L., An N., Wu L., Ma L., Zhang W., Zhang F. 2014 Producing more grain with lower environmental costs. Nature, 514, 486-489.
[15]Zhang L., Zheng J., Chen L., Shen M., Zhang X., Zhang M., Biana X., Zhang J., Zhang W.*, 2015. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. European Journal of Agronomy, 63: 47–54.
[16]Sun Y., Huang S., Yu C., Zhang W.*, 2015. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant and Soil, 397:189–200.
[17]Huang S., Sun Y., Yu C., Zhang W.*,2015. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes. Biology and Fertility of Soils, DOI 10.1007/s00374-015-1075-3.
[18]Zhang Y., Jiang Y., Li Z., Zhu X., Wang X., Chen J., Hang X., Deng A., Zhang J., Zhang W.*, 2015. Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agriculture, Ecosystems and Environment, 208: 86–93.
[19]Jiang Y., Tian Y., Sun Y., Zhang Y., Hang X., Deng A., Zhang J., Zhang W.*, 2016. Effect of rice panicle size on paddy field CH4 emissions. Biology and Fertility of Soils, DOI 10.1007/s00374-015-1084-2.
[20]Zhu X., Zhang J., Zhang Z., Deng A., Zhang W.*, 2016. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. European Journal of Agronomy, 75: 50–59.



TOP