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Dissection of genetic basis of 1,392 rice landraces and 770 hybrid combinations

reveal great potential of rice landraces in hybrid rice improvement
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Short summary:

Based on a large-scale analysis of 2,088 germplasms and 770 hybrid rice combinations,
this study demonstrates that landraces significantly contribute to heterosis and yield-
related traits. This research identified 105 novel QTLs and validated the role of
OsGRWS5.1 in regulating grain width and weight through gene editing. A predictive

platform of phenotypic performance was developed for potential hybrid combinations,
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providing valuable resources for future rice breeding.

Abstract

Hybrid rice has made significant contributions to global food security. However, the
efficient utilization of landraces to further enhance heterosis remains a key challenge in
rice breeding. In this study, we collected a set of 1,392 landraces and 696 hybrid rice
parental lines. A total of 770 hybrid combinations were constructed by crossing of 517
accessions selected from 2,088 rice accessions and seven key yield-related traits were
collected. Nearly 500,000 potential hybrid combinations were predicted,
comprehensive analysis revealed that landraces from South Asia played a significant
role in improving multiple traits. Further investigation revealed substantial variation in
the landraces contribution to the optimal hybrid combinations for various traits, with
landraces particularly contributing to improvements in grain width. We identified 171
QTLs for seven traits using three association analysis methods. Of these QTLs, 77
known genes were identified within 66 QTLs and 105 novel QTLs without any known
genes nearing to them. Gene editing based on CRISPR/Cas9 method showed that
OsGRWS3.1 plays a critical role in regulating grain width and grain weight. Additionally,
a strong correlation was also observed between advantageous haplotypes accumulating
and phenotypic performance enhancing in our findings. More than 45% of the
advantageous haplotypes derived from landraces are likely to play a significant role in
future hybrid rice improvement. A predictive platform was developed that can output
all the seven phenotypes of potential hybrid combinations with a given genotype of
both parents. This research provides valuable data and practical insights for enhancing

heterosis through the efficient utilization of landraces.

Key words: Heterosis; Landraces; Germplasm diversity; Genomic selection; Hybrid
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Over the past fifty years, the widespread adoption of hybrid rice has greatly
enhanced food security and increased farmers' incomes in China. Heterosis (hybrid
vigor) has been widely applied in staple crops such as rice and maize because of its
proven ability to boost yield and improve adaptability (Cheng et al., 2007). However, a
significant challenge persists in effectively and efficiently utilizing the diversity of
landraces to further amplify heterosis (Melchinger, 1999), which continues to limit
progress in crop improvement (Hochholdinger and Yu, 2025).

Landraces provide a valuable genetic pool for rice improvement, offering a wide
range of genetic diversity that enhances yield, strengthens disease resistance, improves
quality, and supports adaptation to climate change (Song et al., 2024; Zheng et al., 2024).
The historical progress of hybrid rice has relied heavily on these diverse landraces. For
example, the development of cytoplasmic male sterility (Luo et al., 2013) and the
introduction of restorer genes from Southeast Asian germplasm make the utilization of
heterosis in practicable (Zhao et al., 2023). The discovery of photo-thermosensitive
genic male sterility (Ding et al., 2012; Fan et al., 2016; Zhou et al., 2012b; Zhou et al.,
2014) have significantly expanded the range of hybrid rice combinations by utilizing
broader genetic backgrounds. For instance, the introduction of the Xa2/ gene has
greatly enhanced rice disease resistance (Song et al., 1995), while the Gnla gene has
significantly increased yield per unit area (Ashikari et al., 2005). These innovations
have improved rice adaptability to high disease pressure and high-density planting
conditions, laying the foundation for future high-yield, resilient varieties (Zhang et al.,
2021).

However, in the current breeding system, most breeders tend to improve existing
parental lines that are high-performing, stable, and easily hybridized (Khan et al., 2015;
Wu et al., 2018). While this approach has improved breeding efficiency in the short
term, it has also led to the underutilization of potentially valuable landraces and wild
relatives gene resources. Although a significant exponential relationship persists
between hybrid cultivar numbers and total cultivar counts across ten major hybrid rice-
producing provinces, the cultivar diversity index has approached saturation thresholds

(Huang, 2022). Over the course of breeding, the emphasis on traits such as high yield,
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disease resistance, and stress tolerance has caused the parent pool to converge, with
many parents sharing highly similar genetic backgrounds (Chen et al., 2021). The
cultivation area of currently major rice varieties in China (https://www.natesc.org.cn/)
reveal that the genetic similarity among current parents had exceeded 90%, significantly
constraining the potential for enhancing heterosis in hybrid breeding. Although
broadening the genetic base is widely recognized as a key strategy for enhancing hybrid
rice (Gao et al., 2022), the low utilization rate of landraces and the substantial workload
involved in hybridization experiments remain significant challenges in the breeding
process.

In recent years, modern computational techniques, particularly the application of
machine learning, have enabled rapid prediction and optimization of hybrid
combinations (Gu et al.,, 2023). However, the prediction still requires hybrid
combinations based on diverse landraces as its foundation (Martini et al., 2021). This
study collected 2,088 rice accessions and carefully selected parental lines for
hybridization based on their genetic background, geographical distribution, and
agronomic traits, resulting in the construction of 770 hybrid combinations. We
conducted in-depth analyses of seven key yield agronomic traits and generated a dataset
of nearly 500,000 potential hybrid combinations using computational techniques. By
analyzing these combinations, we identified distinct patterns of heterosis within the
landraces that could potentially enhance parental performance. Furthermore, we
developed a hybrid combination prediction platform capable of forecasting the
phenotypic performance of potential hybrid combinations based on genotype data. This
study provides valuable data support and practical insights for improving heterosis in

hybrid rice through the efficient utilization of landraces.
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Results

Genetic Diversity Differences Between Rice Germplasm and Hybrid Rice Parents
To enhance the efficient utilization of landraces in hybrid rice breeding, we sequenced
946 accessions landraces and integrated 1,142 publicly available accessions, resulting
in a total of 2,088 rice accessions. This collection includes 1,392 landraces from 18
major rice-producing countries across Asia, representing six global subgroups
(Supplemental Table 1). Additionally, it comprises 321 sterile lines and 375 restorer
lines, collected since the 1980s. These materials reflect key hybrid rice-growing regions
in China, capturing significant ecological and agricultural diversity (Supplemental
Table 1), spanning key periods during which human domestication and breeding have
evolved substantially.

A total of 11.5 Tb of clean reads were obtained, leading to the identification of
1,365,785 high-quality SNPs following a series of stringent filtering steps. Phylogenetic
relationships and principal component analysis (Figure 1A and Supplemental Figure
1A) revealed that 2,088 rice accessions could be divided into six subgroups: 149 AUS,
744 Indical (IND1), 626 Indica? (IND2), and 297 Indica3 (IND3), all of which belong
to Oryza sativa ssp. indica; 107 Tropical japonica (TRJ) and 123 Temperate japonica
(TEJ), all of which belong to O. sativa ssp. japonica. And it includes 42 intermediate
accessions. Among them, the restorer lines were mainly concentrated in /NDI (345
accessions), with a small number distributed in /ND2 (22 accessions). The sterile lines
were predominantly found in IND2 (278 accessions), with only a limited number
observed in IND1 (34 accessions; Supplemental Tablel).

To gain a deeper understanding of the genomic differences between hybrid rice
parents and landraces, we compared the differentiated SNPs (Figure 1B) and the
nucleotide diversity (m; Figure 1C) among them. The results showed that the most
significant SNP differentiated were observed between TEJ and the hybrid rice parent
(INDI), with 1,176,054 differentiated SNPs. Similarly, TEJ also had 1,134,240
differentiated SNPs compared to the hybrid rice parent (/NDZ2). Following this, the
differences between TRJ and IND1 and IND2 were also significant, with 816,897 TRJ-
IND] differentiated SNPs and 780,526 TRJ-IND?2 differentiated SNPs. In contrast, the
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differences between AUS and INDI were 399,600 differentiated SNPs, and between
AUS and IND2, 386,886 differentiated SNPs. The smallest differences were found
between IND3 and the sterile and restorer lines of INDI and IND2, with 22,457 and
23,488 unique SNPs, respectively. GO functional enrichment analysis revealed that
genes associated with above SNPs were enriched in key biological processes, such as
protein synthesis, metabolic regulation, and energy management (Supplemental Figure
1B). These processes may influence rice growth, development, and stress resistance.
We further calculated n values for the landrace subgroups and the sterile and restorer
lines. The average © value of landraces in the IND1 subgroup is 0.001300, compared to
0.001235 for restorers and sterile lines. In IND2, the landraces & value is 0.001470,
while restorers and sterile lines have a m value of 0.001285. The average n values for
IND3, AUS, TEJ, and TRJ are 0.003226, 0.003000, 0.000991, and 0.002315,
respectively, indicating that landraces exhibited higher genetic diversity. These findings
suggest that landraces may provide potential genetic variation and resources for hybrid
rice improvement.

Prediction and Heterosis Analysis of Hybrid Combinations Based on Multi-Trait
for Landraces

We selected 517 accessions (Supplemental Table 2) from a collection of 2,088 rice
accessions as parental lines for subsequent hybrids, including 298 indica (IND) rice, 92
AUS, 72 Temperate japonica (TEJ), 44 Tropical japonica (TRJ), and 11 intermediate
(IM) rice. These parental lines represent a wide geographic distribution across all target
countries and encompass over 99.97% of the diversity in agronomic traits. We
successfully generated 770 F1 hybrids including 335 IND-IND, 92 IND-TEJ, 60 IND-
TRJ, 150 IND-AUS, 15 TEJ-AUS, 16 TRJ-AUS, 48 AUS-AUS, 15 TEJ-TEJ, 6 TEJ-TRJ
and 1 TRJ-TRJ crosses and 32 hybrids based on IM rice (Supplemental Table 2)
developed from these selected parental lines and collected 176 commercially cultivated
hybrids. These hybrids, spanning multiple countries and rice subgroups, offer a solid
foundation for systematically analyzing the agronomic traits of hybrids from diverse
landraces for the first time. We collected data on seven key traits from these hybrids in

Hainan, including flag leaf width (FLW), grain length (GL), grain width (GW), heading
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date (HD), plant height (PH), panicle length (PL), and thousand grain weight (TGW).

To gain a more comprehensive understanding of the agronomic traits of hybrid
combinations derived from 2,088 rice accessions, we developed our predictive models
based on existing hybrids. Therefore, the simplified linear model, which is usually used
to measure the additive effect, is chosen as the prediction method in this study. We
conducted a simulated comparison of three main types of simplified linear models (Xu
etal., 2016; Xu et al., 2014), including parametric models (e.g., GBLUP, LASSO, EN,
and BayesB), semi-parametric models (e.g., RKHS), and machine learning models (e.g.,
SVM, LightGBM, and XGBoost). The analysis results showed that the prediction data
based on GBLUP exhibited the most robust performance across all seven traits (from
0.51 to 0.63; Figure 2A, Supplemental Figure 2B and C) compared to the other seven
methods. Based on these results, we concluded that GBLUP outperformed than other
models in multi-trait prediction which is suitable as the final prediction tool.

To optimize the accuracy and efficiency of the GBLUP method for rice phenotypic
prediction, we assessed the effects of training population size and hybrid combinations.
Our results revealed that prediction accuracy improved and stabilized when the training
population exceeded 700 hybrids (Figure 2B, Supplemental Table 3-4), ensuring
reliable predictions for HD (0.517), FLW (0.278), TGW (0.324), GW (0.611), PH
(0.554), PL (0.425), and GL (0.471). Further analysis the effects of genetic background
showed that hybrids with both parents present achieved the highest prediction accuracy,
such as HD (0.640), PH (0.733), and GW (0.633), while single-parent hybrids
demonstrated reduced accuracy, including TGW (0.301) and PL (0.235) indicating the
impact of missing genetic information on certain traits (Figure 2C). However, it is
noteworthy that hybrids without parental involvement still maintained relatively high
accuracy for specific traits, such as HD (0.851), GW (0.992), and GL (0.660),
highlighting the robustness of the GBLUP method (Figure 2C). our findings confirmed
that an appropriately size of training population is crucial for ensuring GBLUP’s
accuracy, while genetic background plays a significant role in prediction performance.
Even without parental data, GBLUP remains effective, underscoring its broad

applicability in genomic selection breeding.
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To assess the agronomic performance of all 446,985 hybrid combinations, we
calculated the positive mid-parent heterosis (MPH) values for each predicted
combination across multiple phenotypic traits (Figure 2D). A total of 125 varieties
exhibited positive MPH in more than 40% of combinations for five traits. Additionally,
Only two varieties demonstrated positive MPH in more than 40% of combinations for
six traits. Notably, no variety exhibited positive MPH in more than 60% of six traits
(Figure 2E). We then conducted an in-depth analysis of the geographical and genetic
characteristics of the 52 superior varieties. The results revealed that 38 of these varieties
primarily originated from South Asia, 6 of these varieties from East Asia, and 8 of these
varieties from South East Asia (Figure 2F) and were classified into four major groups
(Figure 2G): IND (21 varieties), AUS (11 varieties), TEJ (4 varieties), and TRJ (16
varieties). Further analysis of the distribution of hybrid combinations showed that these
superior hybrids were predominantly concentrated in South Asia/East Asia (37.6%),
South Asia/South Asia (27.6%), and South Asia/Southeast Asia (18.5%) (Figure 2H).
Additionally, the most common hybrid types among these combinations were IND/TRJ
(22.9%), IND/IND (22.6%), and IND/AUS (18.6%) (Figure 2I).

The phenotypes of a total of 2,088 x 2,088 hybrid combinations were predicted
based on 770 hybrids. Analysis of the top 100 hybrid combinations across six traits
revealed the contributions of landraces in hybrids combinations (Supplemental Table
5). For GW and PL, all top-performing combinations (100%) had at least one parent
derived from landraces. In contrast, 59% of the top combinations for PH included at
least one landrace parent (Figure 2J). The presence of landraces was lower in the top
combinations for HD and TGW, at 38% and 35%, respectively. Notably, landraces were
completely absent from the top-performing combinations for GL (Figure 2J). These
findings suggest that landraces contribute differently to various traits, playing a
particularly important role in GW and PL improvement for future breeding programs
(Figure 2K-H).

To ensure users easily utilizing the predictive platform of our constructed models,

we developed a user-friendly online platform within Predicting Rice Germplasm
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Hybrid Phenotype (PRGHP) web platform (https://hybrice.cn/). Anyone can access the
nine predictive traits by selecting the parent lines. If users wish to predict their own
materials using our models, they can process their genotype data according to the
pipeline described in the support webpage, upload the genotype file, and download for
the results once the task is complete.
GWAS uncovers potential genes associated with heterosis
Heterosis is generated by dominance effects, overdominance effects, and epistasis. To
gain a more comprehensive understanding of the genomic basis of heterosis in rice, we
employed three methods to analyze the genetic basis influencing seven key agronomic
traits in rice. First, a mixed linear model (MLM) incorporating Q+K covariates was
used for genome-wide association studies (GWAS) on 946 landraces, focusing on
additive and dominance effects, identifying 8,842 SNPs and 86 QTLs significantly
associated with the phenotype (-logio(P) > 5). Second, we applied FiGenotypeo1 GWAS to
770 F1 populations, encoding SNPs as either 0 or 1 to identify loci associated with
dominant effects (Tan and Ingvarsson, 2022). A total of 5,443 SNPs and 62 QTLs were
identified that were significantly associated with phenotype. Lastly, we conducted
FiGenotypeo12 GWAS on 770 F1 populations, treating the number of minor alleles (0/1/2)
as a continuous variable to assess additive effect loci, assuming each additional minor
allele has the same genetic impact, thereby revealing the independent contributions of
parental alleles and heterozygous alleles the influence of additive effects on phenotypes,
identifying 3,657 SNPs and 51 QTLs significantly associated with seven traits. In total,
171 QTLs were detected across the three methods, of these, 77 known genes located
within 66 QTLs, and 105 new QTLs were discovered (Figure 3A and B, Supplemental
Table 6-8). We compared the haplotypes of those 77 known genes revealed that the
causal variants in 19 genes matched those reported in the previously study (Wei et al.,
2021).
OsGRWS5. 1 positively regulates grain width and weight in rice

Grain width is a key quantitative trait that influences thousand-grain weight, which
is one of the three major factors determining rice yield. Comparative analysis of QTLs

for grain width and thousand-grain weight revealed that significant loci for grain width
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(qGW5.1, 130 Kb) and thousand-grain weight (¢7GW5.1, 132 Kb) were co-localized in
the same region, suggesting that they may represent the same QTL (Figure 3A). Gene
function annotation and haplotype-phenotype association analysis of the 24 genes
within the gGWS35.1 region identified LOC Os05g01710, named OsGRWS.1 (Grain-
related Width and Weight 5.1; Figure 4A-B), as being functionally related to both grain
width and grain weight, with its haplotype also significantly associated with these two
traits (Supplemental Table 6). This gene encodes a transcription initiation factor IIAy
(OsTFIIAYS) containing four helix-bundle domains and three B-sheet domains, which
suggested to be a cofactor that required for transcription by RNA polymerase II (Figure
4C) (Iyer-Pascuzzi and McCouch, 2007). We identified 24 SNPs in the promoter (2 Kb)
and coding regions of OsGRWS3.1, which can be categorized into 7 major haplotypes
(Figure 4D and Supplemental Table 9). Haplotype network analysis revealed that these
haplotypes can be grouped into four distinct clusters. Group A, consisting of Hapl and
Hap2, primarily includes TEJ and TRJ landraces and shows the largest grain width (3.35
mm) and highest thousand-grain weight (26.15 g) compared to other groups. Group C,
composed of AUS and IND landraces, exhibits the narrowest grain width (3.05 mm)
and lowest thousand-grain weight (25.70 g). Group D consists solely of Hap3, mainly
found in AUS, with a slender grain shape (3.09 mm) and lower thousand-grain weight
(22.80 g). Group B, composed exclusively of IND, shows a similar grain width (2.92
mm) to Group D, but with a thousand-grain weight similar to Group A (22.55 g) (Figure
4E-G). To further validate the function of OsGRWS5.I in regulating grain width and
thousand-grain weight, we used CRISPR/Cas9 technology to knock out OsGRW35.1 and
generated two independent knockout transgenic lines (Figure 4H). The results showed
that the grain width (3.35 mm) and thousand-grain weight (20.04 g) of OsGRWS5.1
knock out lines were significantly lower than those of the wild-type Nipponbare variety
(3.44 mm and 21.39 g) (Figure 41-M), confirming the role of OsGRWS5.1 in regulating
rice grain width and its potential to improve both rice appearance quality and yield.
Hybrid vigor analysis of genetic loci

To evaluate the dominance effect size of the loci, the heterotic loci and the

dominance/overdominance effects were analyzed. We evaluated the effects of
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heterozygous loci for the peak SNPs above the suggestive P value (FLW, GL, GW, HD,
PH, PL, and TGW) in Sanya. 1,361 loci were used for final analysis. We found that
most loci (81%) showed incomplete dominance effects in F1 GWAS. There were 340
loci with strong overdominance effects (86 with positive effect and 254 with negative
effect (Figure 5A, Supplemental Figure 3A). To determine whether the accumulation
of dominant heterozygous genotypes in the 770 F1 hybrids is associated with phenotypic
enhancement, we performed correlation analysis between the genotypes of significant
loci and their corresponding phenotypes. First, dominant heterozygous genotypes were
identified among the significant loci, and then the correlation between the number of
dominant heterozygous genotypes and phenotypic improvement was calculated. The
results show that the accumulation of dominant heterozygous genotypes from both
FiGenotypeo1 and FiGenotypeoi2 GWAS datasets is correlated with improved phenotypic
performance (Figure 5B, Supplemental Figure 3B). Notably, heading date exhibited the
highest correlation in both GWAS results (0.40 and 0.33), while flag leaf width showed
the lowest correlation in both datasets (0.10 and 0.10). Overall, the accumulation of
dominant heterozygous genotypes was strongly correlated with phenotype (Figure 5B,
Supplemental Figure 3B), which can enhance phenotypic expression and contribute to
hybrid vigor. Additionally, we performed haplotype analysis to further investigate the
correlation between gene haplotypes and phenotypes. These results show that the
effects of favorable haplotypes accumulation are better than the accumulation of
dominant heterozygous locus (Supplemental Figure 3C).

Divergence of favorable alleles accumulation in hybrids parents and landraces
Since rice is a self-pollinating crop, during the process of artificial selection, certain
favorable gene combinations become fixed across a large number of materials, resulting
in the same beneficial genes appearing in the parental lines. This leads to a limitation
in further enhancing the hybrid heterosis. A comprehensive haplotype analysis was
performed on 120 candidate genes that previously identified through GWAS in 946
landraces. Among them, 12 are associated with FLW, 14 with GL, 22 with GW, 14 with
HD, 15 with PH, 23 with PL, and 20 with TGW. The results showed that 37 candidate

genes (30.8%) with superior haplotypes were highly prevalent, present at a frequency
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of 80-100%, while 24 candidate genes (20.0%) with superior haplotypes demonstrated
substantial presence at 60-80% frequency. Moderate frequency distribution (40-60%)
of superior haplotypes was observed in 8 candidate genes, whereas 15 candidate genes
(12.5%) show relative low frequency (20-40%). Notably, 36 candidate genes were
identified as rare superior haplotypes that present a frequency below 20%. However,
the haplotype analysis of 368 restorer lines and 312 maintainer lines showed a distinct
distribution pattern compared to the landrace accessions. Among them, approximately
half of the candidate genes with superior haplotypes were primarily distributed within
a frequency range of 80-100% in the 368 restorer lines (46.7%) and 312 maintainer
lines (42.5%). Additionally, candidate genes with superior haplotypes in the frequency
range of 80%-20% were relatively lower distributed in the 368 restorer lines (5%) and
312 maintainer lines (18.3%). A total of 58 candidate genes (48.3%) with superior
haplotypes were unique to the germplasm resources, mainly distributed on
chromosomes 5 and 8 (Figure 5C), and had a high proportion in 52 elite parental lines.
Among them, five parental lines had a specific superior haplotype distribution
frequency of 0-20%, 29 parental lines had a frequency of 20-40%, and 18 parental lines
had a frequency of 40-60% (Figure 5D). These 58 superior haplotypes were primarily
derived from different subpopulations: 3 from AUS, 9 from IND, 24 from TEJ, and 20
from TRJ (Figure SE). However, they were not fixed in the 368 restorer lines and 312
maintainer lines.
Discussion

Heterosis, or hybrid vigor, remains a century-old challenge in crop genetics. While
numerous studies have supported three major hypotheses-dominance, overdominance,
and epistasis (Hua et al., 2003; Huang et al., 2016; Zhou et al., 2012a). Most findings
remain at the QTL level, lacking gene-level resolution. In rice, heterosis manifests as a
complex organism-wide phenomenon, evident as early as syncytium formation during
embryogenesis, influencing gene expression, cell size, and metabolic efficiency (Gu
and Han, 2024; Gu et al., 2023; Huang et al., 2015; Jahnke et al., 2010). In this study,
we analyzed 946 landraces and 770 Fi hybrids using GWAS across seven agronomic

traits. A total of 171 QTLs were identified (86 in landraces, 62 in FiGenotypeo12, and 51 in
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FiGenotypeo1), with 25 QTLs shared across populations. Within these QTL intervals, we
identified 66 QTLs co-localized with 77 known genes. Notably, OsGRWS.1, located on
the short arm of chromosome 5, was validated as a key gene influencing grain width
and thousand-grain weight through CRISPR/Cas9 analyses. Particularly, OsGRWS.1
containing a nonsynonymous variant (T/A, 437,499 bp) in the second exon region
(Figure 4D). Further haplotype analysis revealed that Group A and Group B showing
strong yield-enhancing effects (Figure 4F-M). Additional investigations, such as
genetic complementation assays, the base transversion editing A-to-T could further
validate its function in improving grain yield.

Predictive ability is influenced by marker density, training population size, the
relationship of training population and the testing sample, heritability, the linkage
disequilibrium (LD) of markers and QTL, ranged from 0.15 to 0.85 with different
population and phenotype (Voss-Fels et al., 2019; Xu et al., 2021). In this study, we
generated a hybrid panel from /IND, JAP, and AUS lines and predicted the performance
of 2,088 possible hybrid combinations using GBLUP. Prediction accuracies ranged
from 0.278 to 0.611. Among the top 100 predicted combinations for grain yield traits,
all contained at least one landrace parent, confirming their potential in hybrid
improvement. Pan-genome analysis has shown that variable genes, rather than core
genes, are critical for crop improvement (Qin et al., 2021). We found that hybrid
genomes contain more variable genes than either parent, and their complementary may
underpin heterosis (Hochholdinger and Yu, 2025). However, modern parental lines
often show fixation of elite alleles, limiting diversity. Analysis of 120 genes
significantly associated with local varieties GWAS showed that about 40% of the
dominant haplotypes were found in the 696 hybrid rice parent materials, but more than
45% of the dominant haplotypes were endemic to landraces. These findings highlight
the untapped value of landrace alleles for improving hybrid vigor.

Genetic dissection of key agronomic traits in rice not only advances the theoretical
understanding of the molecular mechanisms underlying yield but also provides
practical guidance for breeding programs (Fukuoka et al., 2010). Heterosis leverages

diverse variation to enhance not only grain yield but also disease resistance, stress
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tolerance, and environmental adaptability. Through whole-genome association analysis,
heterosis-related loci can be identified and subsequently utilized via marker-assisted
selection, gene editing, and the accumulation of superior haplotypes containing
additive-effect QTLs (Liu et al., 2022). These approaches collectively contribute to the
improvement of major traits, the enhancement of parental lines, and the acceleration of
hybrid breeding cycles. Furthermore, the genetic analysis and predictive modeling of
heterosis can facilitate the efficient selection of high-performing hybrid combinations,
boosting both yield and grain quality. By integrating genome selection and landrace-
derived haplotypes into breeding programs, we can use materials with superior
haplotypes improving these male sterile and restorer lines and design new parental
combinations with greater heterotic potential, offering a promising strategy to enhance
yield and maintain food security under environmental and demographic pressures

(Figure 6).
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Materials and Methods

Plant Materials

The 2,088 rice accessions used in this study include 1,392 samples from 18 major rice-
producing countries in Asia, representing local varieties from six rice populations
worldwide (Supplemental Table 1). Among these, 836 samples were introduced from
the International Rice Research Institute (IRRI), sourced from regions such as East Asia,
South Asia, and Southeast Asia, primarily consisting of indica and japonica rice
varieties, as well as Aus and Basmati varieties. Additionally, the collection includes 321

cytoplasmic male sterility (CMS) lines and 375 restorer lines, directly collected since
the 1980s. These materials include 211 CMS lines, 110 gametocidal male sterility
(GMS) lines, 294 three-line hybrid rice (3R) varieties, and 81 two-line hybrid rice (2R)
varieties, totaling 696 samples. These materials represent the parental lines of most
indica hybrid rice varieties widely cultivated in southern China over the past 50 years.

To fully represent the comprehensively diversity of 2,088 local rice varieties, we
selected accessions for hybrid combinations based on three key factors: geographical
distribution, genetic diversity, and phenotypic variation. As a result, 517 representative
accessions were selected for crossing. The selection process was as follows:
Geographical distribution: The 517 selected lines were proportionally sampled from
major rice-growing regions covered by the 2,088 local varieties. This ensured broad
ecological and regional representation among the chosen parents. Genetic diversity: To
assess how well the selected lines represented the overall genetic variation, we
calculated the Shannon-Wiener diversity index based on seven key agronomic traits.
First, the mean and standard deviation of each trait were calculated across all samples.
Each trait was then categorized into three levels (low, medium, high) based on its
distribution. Diversity indices were computed for each trait and averaged to obtain an
overall diversity value. The results showed that the selected 517 lines retained 99.97%
of the total phenotypic diversity observed in the 2,088 local varieties. Phenotypic traits:
Synchronization of flowering time was also prioritized during selection to facilitate
effective field crossing. This approach enabled efficient random mating in the field,

ultimately resulting in the development of 770 F1 hybrid combinations.
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Plant materials and phenotyping.

Phenotyping of local landraces: In the winter seasons of 2018 and 2019, we conducted
systematic phenotyping of 946 rice landrace accessions in Lingshui, Hainan (18.25°N,
109.51°E). Crossing procedure: In the summer of 2020, the 946 landrace accessions
were planted at the Guangxi Academy of Agricultural Sciences to facilitate large-scale
crossing and ensure crossing efficiency and success rates. During crossing, hot water
emasculation was used to inactivate the pollen viability of the female plants. Once the
anthers extruded from the lemma and palea, manual removal was conducted promptly,
and the panicles were immediately bagged to prevent contamination from external
pollen during the crossing process. This method effectively reduced the difficulty and
labor intensity of manual emasculation while enabling the acquisition of sufficient Fi
seeds for subsequent phenotyping. Verification of hybridization: After obtaining the F
seeds, we conducted molecular marker genotyping on both the parents and the Fi
hybrids to verify the success of the hybridization. Only those hybrids confirmed to be
successful were used for subsequent phenotyping, ensuring the accuracy and reliability
of the data. Phenotyping of Fi1 hybrids: In the winter of 2020, 770 verified F1 hybrids
were planted in Lingshui, Hainan for systematic phenotyping.

In the spring of 2024, a randomized block design was employed to plant and
phenotypically assess T1 generation OsGRW3S.1 gene knockout mutants and wild-type
plants in Beijing (latitude 39.9042°N, longitude 116.4074°E). Each genotype was
planted in 2 rows with 10 plants per row and a spacing of 20 cm x 20 cm. The main
traits measured included grain width and 1000-grain weight.

DNA isolation and genome sequencing.

Genomic DNA was extracted from leaf samples using the CTAB method (Doyle and
Doyle, 1987), and the quality of the extracted DNA was assessed. The DNA library for
re-sequencing was constructed using the TruSeq Nano DNA HT kit (Illumina, San
Diego). First, the genomic DNA was randomly fragmented using ultrasonic waves, and
DNA fragments of approximately 350 bp were selected as the target size. After
electrophoretic recovery of these fragments, adapters were ligated to both ends,

followed by PCR amplification (Saiki et al., 1988). The size distribution of the
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amplification products was assessed using an Agilent 2100 Bioanalyzer, and the library
was precisely quantified using quantitative PCR. The constructed library was then
subjected to paired-end sequencing according to the standard protocol of the Illumina
HiSeq 4000 platform (Illumina, San Diego).

Sequence quality checking and filtering.

We first performed quality control (QC) and adapter trimming on the raw sequencing
data using the fastp tool (Chen et al., 2018). During the QC process, the following types
of reads were excluded: (1) reads containing more than 10% unrecognized bases; (2)
reads shorter than 50 bp; (3) reads with a quality score of Q < 15; and (4) low-quality
reads where more than 50% of the bases had a Q-score < 5. After quality control
processing, the data were aligned to the reference genome NIP (Oryza sativa L. var.
Nipponbare, MSU v7.0) using BWA-MEM (Li and Durbin, 2009) with the parameters:
mem-T4-K3-M-R. Subsequently, variant detection was performed using the GATK
HaplotypeCaller (McKenna et al., 2010) module, generating initial variant sites. To
ensure high-quality variants, four filtering criteria were applied: QD < 4.0, FS > 200.0,
SOR > 10.0, and ReadPosRankSum < -20.0, resulting in a final VCF file. In population
analysis, low-frequency alleles and alleles with high missing rates or high
heterozygosity can impact the accuracy of the results. Therefore, we further filtered the
SNP sites using VCFtools (Danecek et al., 2011), removing the following sites that did
not meet the criteria: (1) non-biallelic SNP sites; (2) sites with a minor allele frequency
(MAF) <0.05; (3) sites with a missing rate > 0.25; (4) sites with a heterozygosity rate >
0.8.

VCF file integration.

We used the merge command in beftools (Li, 2011) (v1.10) to merge the VCF files from
the two populations. To ensure the accuracy of the merging process, we first indexed
each VCF file and generated the corresponding .csi index files using the beftools index
command. Subsequently, the VCF files from the two populations were merged using
the beftools merge command. This command integrated the variation data from all
samples into a new VCF file based on the genomic positions and genotypic information

of each variant. If the variant sites differed between the populations, the merged file
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retained all unique variants and filled missing values for the absent sites. After the
merging process was completed, the bcftools stats command was used to perform
quality checks on the merged VCF file to verify the success of the merge, including
checking the integrity of the variant sites, completeness of the sample information, and
ensuring the accuracy of all variant and sample data. Following the quality control of
the merged VCF file, we further filtered the variant sites using the following four
criteria: 1) minor allele frequency (MAF) > 0.05; 2) missing rate (max-missing) < 0.75;
3) minimum number of alleles (min-alleles) = 2; 4) maximum number of alleles (max-
alleles) = 2. These filtering criteria ensured the quality of the variant data while
retaining meaningful variant sites for population genetic analysis and association
studies. The final VCF file, after rigorous filtering, was suitable for subsequent
population structure analysis and association studies.

Clustering and Principal Component Analysis.

The Neighbor-Joining Phylogenetic Tree (NJ) is a tree diagram used to describe the
phylogenetic relationships among different varieties or populations, based on genetic
characteristics to assess the degree of relatedness between groups. We constructed a
phylogenetic tree for the 2,088 samples using the Neighbor-Joining method
implemented in the VCF2Dis tool (https://github.com/BGI-shenzhen/VCF2Dis). The
resulting tree was then visualized through the iTOL (Interactive Tree of Life) (Letunic
and Bork, 2021). platform to display the genetic relationships between different
varieties and populations. Principal Component Analysis (PCA) was performed using
PLINK software (Purcell et al., 2007), which reduced the dimensionality of the
variation data to reveal the primary genetic differences among the population samples.
These differences were projected into the principal component space for intuitive
visualization of population structure.

Population diversity analysis and specific locus calculation.

SNP data analysis was performed using PLINK software. The population genome was
divided using PLINK, employing a sliding window approach with a window size of
100 Kb to calculate m values. The © value for each window was determined by

calculating the average sequence difference between all possible base pairs within the
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window. 7 values were generated for the entire genome across different populations,
including landraces and hybrid rice parental lines from each subpopulation. Based on
the integrated VCF file, the proportion of variant bases at each SNP site contributed by
the landraces and hybrid rice parental lines from each subpopulation was calculated. If
the contribution of any one population to the variant base at a given SNP site reached
or exceeded 95%, the SNP site was classified as a population-specific site.

Trait diversity assessment

Use Excel to calculate the mean and standard deviation of seven quantitative traits.
Based on the mean and standard deviation, rank the quantitative traits of all materials
and classify them into three levels: low, medium, and high. The Shannon-Wiener
diversity index (H") is used to evaluate the diversity of each trait. The calculation

formula is as follow (Ortiz-Burgos, 2016):

S
H'= = pilnp)
i=1

Where H' is the Shannon-Wiener diversity index, representing the diversity level of
the sample; S is the number of different categories in the sample; p; is the relative
frequency of the i-th category, which is the proportion of that category in the total
sample; In(p;) is the natural logarithm of the frequency of the i-th category. By
calculating the Shannon-Wiener diversity index, we separately compute the diversity
index for the seven traits in the 517 parent materials and 2,088 materials, and take their
average values. At the same time, we calculate the average diversity index for the 517
parent materials and determine the percentage of this average relative to the average
diversity index of the seven traits in the 2,088 materials.

Hybrid genome prediction

Definition and Coding of Hybrid Varieties: In this model, the alleles of the paternal
and maternal parents are defined as A1 and Az, respectively. When the hybrid variety’s
allele at a given locus matches the paternal allele (A1) or the maternal allele (A2), it is
assigned values of 1 and -1, respectively. Two different coding schemes are employed
based on the genetic characteristics of the loci: Additive Coding (Z): In the additive

model, the hybrid genotype is coded as -1, 0, and 1, corresponding to the homozygous
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maternal allele, heterozygous, and homozygous paternal allele, respectively. This
method is used to capture the additive effects between alleles in the hybrid. Dominant
Coding (W): In the dominant model, the hybrid genotype is coded as 0 or 1, where 0
represents the absence of a dominant effect and 1 represents the presence of a dominant
effect. This method is used to capture the contribution of dominant alleles. Based on
these coding schemes, a mixed model of additive and dominant effects is used to predict
the genotype. The final prediction results are standardized and centered using the scale()
function in R to ensure comparability across different traits.

The definition formula for the hybrid prediction variables is:

(1= %(1 +1) ford, A,

z{ 0= %[1 +(=1] ford,A,
-1= %[(—1) F(=1]  fordA,
(0= |%(1 _ 1)| ford,A,

wi{ 1= Em (D] | forA,A,
o=[ID-DI|  foraa,

In this study, to further improve the accuracy of hybrid genotype prediction, we
extended the existing additive-dominant mixed model by incorporating parental
phenotypes as an additional influencing factor. This resulted in a predictive model that
integrates additive-dominant effects with parental phenotypes. Based on the best linear
unbiased prediction (GBLUP) of the additive-dominant mixed variable model (UV-AD)
(Clark and van der Werf, 2013). we included the parental phenotypes as covariates in
the model to enhance the accuracy of hybrid genotype prediction. In this model,
parental phenotypes are treated as significant variables affecting the hybrid
performance. By quantifying the additive and dominant effects of the parents in the
model, we further improved the predictive power of the hybrid genotypes. Additive
Effect Integration: By incorporating the phenotypic data of both the father and mother,

the model can more accurately capture the additive effects of parental alleles, thereby
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improving the prediction of the hybrid's phenotypic performance. The additive effects
are encoded through the parental alleles (A1 and A2). Dominant Effect Integration: In
addition to the additive effects, the model also captures the dominant effects between
the parents. Dominant effect encoding (W) is used to describe the influence of parental
allele combinations on the hybrid's traits. The inclusion of dominant effects enhances
the model's ability to explain the complex traits of the hybrid. Parental Phenotype
Integration: In the model, parental phenotypic information is incorporated as
covariates, allowing the prediction to be based not only on genotype data but also on
the potential impact of the parental phenotypes on the hybrid performance. This
approach enables the model to more accurately predict the hybrid performance under
different environmental conditions.

The definition formula for the hybrid prediction variable becomes:

y =X +Zy, + Wy, + ¢
y :%(PM'i_PF)Ba, +%|PM_PF|Bd+ XB +Zy, + Wy, + ¢

In the formula, Pm and Pr represent the parental phenotypes, S« and fa represent
the additive and dominance fixed effects, respectively. X is the fixed effect structure
matrix used to predict y, and m and n denote the total sample size and the total number
of markers, respectively. Z and W are the additive and dominance hybrid prediction
variables, which are m x n matrices. y represents the effect values of the markers, and
¢ is a random error vector, where e~N(0 , 1.6°).

Two methods were employed in this study to predict the hybrid genotype. The first
method (FiGenotypeo1) utilizes the additive-dominance mixed model (UV-AD) based on
the best linear unbiased prediction (GBLUP) from the "Predhy" package of R (Xu,
2017). This model integrates parental phenotype data to predict the genotypes of 770
hybrid samples. The second method (FiGenotypeo12) follows the procedure outlined below:
First, all heterozygous sites in the 946 parental VCF files are replaced with missing
values to avoid interference from heterozygotes in subsequent analyses. Next, the
Beagle software is used to impute the missing genotype data. Afterward, the imputed
genotype data are converted to a 0-2 encoding format (0 for homozygous major alleles,

1 for heterozygotes, and 2 for homozygous minor alleles) using the Plink software to
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ensure compatibility with subsequent analysis tools. Finally, genotype prediction for
the hybrids is performed using the synthetic.cross() function from the "ASRgenomics"
package of R (https://doi.org/10.32614/CRAN.package. ASRgenomics). This method
effectively reduces the bias introduced by missing data, ensuring the accuracy and
reliability of genotype predictions.

Hybrid phenotype prediction

Genome selection (GS) utilizes high-density SNP and phenotype information from
parental samples and a subset of hybrid samples to establish the association between
markers and phenotypes, thereby enabling the prediction of phenotypes for additional

hybrids that have not yet undergone field trials. The model expression is as follows:

m
y=Xﬁ + szyk‘l'g
k=1

In this model, X represents the fixed effect structure matrix, f denotes the fixed
effects, m is the total number of markers, Zk represents the genotype vector for n
individuals at the k-th marker, yx denotes the effect of the k-th marker, and ¢ is a random
error vector, distributed as e~N(0, I,6°). Based on this, the GBLUP prediction model
combined with auxiliary traits is expressed as follows:

y=Pf+XB+Zyy + Wiy + ¢

In this model, auxiliary traits are treated as fixed effects, with P1 representing the
phenotype value of the auxiliary trait. X denotes the fixed effect structure matrix, f
represents the fixed effects, yk indicates the effect of the k-th marker, and Zx and Wk
represent the additive and dominance genotype vectors for n individuals at the k-th
marker, respectively. ¢ is a random error vector, distributed as e~N(0, I.6°).
Genome-Wide Association Studies
In this study, the QK mixed linear model was used for analysis, and the EMMAX
software package was employed (Kang et al., 2010). The expression of the model is as
follows:

y=Xa+QBf+Ku+te
In this study, y represents the phenotype vector, X is the genotype matrix, a is the

genotype effect vector, Q is the fixed effect vector, B is the fixed effect vector, K is the
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random effect matrix, p is the random effect vector, and e is the residual vector. The P-
value indicates the likelihood that the genotype effect vector a for each SNP is zero; the
smaller the P-value, the stronger the association between the SNP and the phenotype.
The association results are visualized using Manhattan and Quantile-Quantile (QQ)
plots. The Manhattan plot displays the P-values for each SNP across all chromosomes,
while the QQ plot shows the overall association effect for all SNPs. In the initial phase,
if the observed values are close to the expected values, it indicates that the model's
association effect aligns well with the actual data. As the analysis progresses, if the
observed values exceed the expected values, it indicates that the model has accurately
identified significant loci. Finally, significant SNPs are annotated for their gene
functions based on decay distance or conventional genetic distance. The x-axis of the
Manbhattan plot corresponds to the 12 chromosomes of rice, while the y-axis shows the
-log10(P) value of each SNP’s effect on the phenotype. We calculated the suggestive
threshold using the formula: —logio(1/effective number of independent SNPs) as
previously described(Wang et al., 2016). To determine the effective number of
independent SNPs, we used PLINK with a window size of 50, step size of 50, and 1> >
0.3, resulting in 102,526 effective independent SNPs in the full population. Therefore,
we set the significance threshold at: —logio(P)=5. SNP blocks within 70KB of a
significant SNP are defined as candidate associated regions. Genes within these regions
are selected as candidate genes for GWAS association. Based on related SNPs, allele
types with favorable agronomic traits (e.g., earlier heading date (HD), shorter plant
height (PH), wider flag leaf width (FLW) and grain width (GW), higher 1000-grain
weight (TGW), and longer panicle length (PL) and grain length (GL) are considered
advantageous.

We conducted a genome-wide association study (GWAS) using the rMVP package
of R (Yin et al., 2021).The phenotype data included seven traits from 770 hybrids, and
the genotype data were derived from the predicted Ol-type and 012-type hybrid
genotypes. Genotype quality control was performed using VCFtools, retaining SNPs
with a minor allele frequency (MAF) > 0.05. After quality control, a total of 5,415,129
SNPs and 4,311,972 SNPs were retained for subsequent analysis. The MVP.Data()
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function within the rMVP package was used to convert the genotype and phenotype
data into a suitable format for analysis. GWAS analysis was performed using the MVP()
function in rtMVP. To account for population structure and hidden relatedness, a mixed
linear model (MLM) was used for association analysis. In the MLM, the kinship matrix
was used to correct for genetic relatedness among individuals, and the first three
principal components (PCs) were used to adjust for population structure. The
GenotypeO1 file was used to calculate the dominant effects of the loci, while
Genotype012 was used to calculate the additive effects. The x-axis of the Manhattan
plot represents the 12 chromosomes of rice, and the y-axis shows the -logio(P) value
for each SNP's effect on the phenotype. A threshold of -logio(P) > 5 was set, with points
above this threshold considered significantly associated with the phenotype under
investigation.

Degree of Dominance

The degree of dominance ‘d/a’ was calculated using the peak SNPs of the associated
loci from FiGenotypeo1 and FiGenotypeo12 GWAS, where ‘d” and ‘a’ referred to the dominant
effect and the additive effect, respectively. The effects of heterozygous alleles were
analysed for the GWAS peaks above the suggestive P value (-logio(P) > 5, from the
linear mixed model) underlying the heading data, grain length, grain width, thousand
grain weight, panicle length, plant height and flag leaf width. In the calculation of ‘d/a’,
the lowest p-value of the SNP in each 200 Kb genomic region is recorded as an
association signal for that site. Peak SNPs of the top 100 associated sites (sorted by
associated signal) were used for analysis. The SNP sites in which heterozygous
genotypes or homozygous genotypes of both the minor alleles had a frequency of < 15
in number were excluded. The average phenotypic values of heterozygous and
homozygous genotypes were calculated for each significant associated SNP to evaluate
the effects of heterozygous and homozygous genotypes.

Accumulation of Superior Locus and Superior Haplotypes

In the GWAS of FiGenotypeo1 and Figenotypeo12, the significant correlation sites (-logio(P) >
5) were selected, and the phenotypes with better performance such as short heading

time, long grain length, wide grain width, large 1000-grain weight, long ear length,
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plant height and blade width were defined as dominant phenotypes. At the same time,
the phenotypic grouping significance of heterozygous and homozygous alleles was
compared for the dominant phenotypes, and the sites where the heterozygous alleles
were significantly superior to the homozygous alleles were identified as the dominant
heterozygous alleles. The corr.test() function of the psych package of R was used to
calculate the correlation between the accumulation of predominance heterozygous
alleles and phenotype (https://doi.org/10.32614/CRAN.package.psych).

Significant correlation sites (-logio(P) > 5) were screened at GWAS in FiGenotypeo12,
and each phenotypic significant site was annotated and haplotype analyzed. Excellent
haplotypes were identified for candidate genes with significant phenotypic differences.
Then the number of dominant haplotypes in 770 hybrids was counted, and the
correlation between the cumulative number of dominant haplotypes and phenotypes
was tested.

Gene cloning and plant transformation

The sgRNA targeting the exon of OsGRWS5.1 gene was designed using CRISPR-P 2.0
and cloned into the pPCAMBIA1300 vector containing Cas9. The recombinant plasmid
was sequenced and verified, then transformed into the Agrobacterium strain EHA105.
Subsequently, the Agrobacterium-mediated transformation method was used to
transform callus tissue of Nipponbare. After co-cultivation, the callus tissue was
cultured on a selection medium containing 50 mg/L hygromycin to select for resistant
callus. The resistant callus was then transferred to a differentiation medium to induce
plant regeneration, and eventually transferred to a rooting medium for root development.
Genomic DNA was extracted from To transgenic plants, and PCR amplification of the
target OsGRWS3S.1 gene fragment was performed, followed by sequencing to verify the
mutations. Mutation analysis was conducted using Sequencher (5.4.5) software to
confirm the presence of frameshift mutations (Nishimura, 2000). To and T1 generations
were planted in Hainan, China, during the winter of 2023 and the spring of 2024,
respectively, for phenotypic evaluation.

CODE AND DATA AVAILABILITY

To facilitate user-friendly access to our hybrid prediction tools and datasets, we
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developed the Predicting Rice Germplasm Hybrid Phenotype (PRGHP) web platform,

publicly available in (https://hybrice.cn/). All software or scripts used in the study are

publicly available as described in methods. The raw sequence data have been deposited
in the NCBI GenBank database under accession numbers PRINA65690, PRJEB6180
and China National Genomics Data Center under accession numbers PRICA045734.

All source datasets were available in the Supplemental tables.
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Figure Legends

Figure 1. Diversity Comparison Analysis of 2,088 accessions.

(A) Neighbor-Joining Tree of 2,088 accessions including 1,392 landraces and 696
hybrid rice parent lines (HP) that including 321 sterile lines and 375 restorer lines.
Yellow lines represent HP, while red, purple, blue, dark blue, and orange represent
Indical (INDI), Indica? (IND2), Indica3 (IND3), AUS, Tropical japonica (TRJ) and
Temperate japonica (TEJ), respectively.

(B) The specific SNPs of hybrid rice parent lines compared to other subgroups (IND3,
AUS, TEJ, TRJ). Green bars represent the proportion of shared SNPs (share), and
yellow bars represent the proportion of unique SNPs (uniq).

(C) Genome-wide nucleotide diversity (m-value) analysis of landraces and HP,
Landraces were categorized into five groups: AUS, IND1, IND2, IND3, TEJ and TRJ.
INDI"? and IND2"™ represent hybrid rice parent belongs to IND/ and IND2.
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Figure 2. Phenotypic Prediction and Heterosis Analysis of Hybrid Combinations
(A) Prediction accuracy of seven traits (FLW, flag leaf width; GL, grain length; GW,
grain width; HD, heading date; PH, plant height; PL, panicle length; TGW, thousand
grain weight) using five-fold cross-validation. ‘A’ and ‘AD’ represent the additive effect
model and the additive-dominant effect model, respectively.

(B) Effects of training sample size (ranging from 110 to 770 samples, with increments
of 110 samples) on prediction accuracy using GBLUP across seven traits.

(C) Predictive ability of seven traits across parental presence/absence combinations.
(D) Statistical analysis of positive mid-parent heterosis across multiple traits for each
hybrid combination. Blue indicates hybrid combinations exhibiting positive mid-parent
heterosis in a single trait, while red denotes those displaying positive mid-parent
heterosis (MPH) across all seven traits. A phylogenetic tree from 946 samples and
groups (IND, AUS, TRJ, TEJ) are shown on the right.

(E) Distribution of parents based on the percentage of hybrid combinations exhibiting
MPH across multiple traits. The table categorizes parents according to the proportion
of their hybrid combinations showing positive MPH for more than 4, 5, or 6 traits,
divided into five percentage ranges: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%.
(F) Geographical distribution of the 52 superior parents within the 946 population
across East Asia (EA), South Asia (SA), and Southeast Asia (SEA). Yellow and green
indicate superior parents (adv) and non-superior parents (disadv), respectively.

(G) Subgroup distribution of the 52 superior parents in the 946 population, classified as
AUS, IND, TEJ and TRJ.

(H) Geographical distribution of all hybrid combinations the 52 superior parents.

(I) Population distribution of all hybrid combinations involving the 52 superior parents.
(J) 2,088 parents and 946 hybrids were used to predict the phenotype of hybrids, and
the proportion of hybrids involving germplasm resources and non-germplasm
resources among the top 100 combinations of six phenotypes was determined.

(K-H) The phenotypes of the five top 100 combinations with these germplasm
resources were significantly different from those of the 176 hybrids formed by the

sterile line restorer line (the top 100 combinations with no germplasm resources
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Figure 3. Genome-wide association study (GWAS) of 946 landraces and 770 Fi.
(A) The circles from inside-out represent GWAS results of 946 landraces (a) 770
Fi1Genotypeo1 (b) and 770 FiGenotypeo12 (¢). Significant SNPs with -logio(P) values greater
than 5 are marked (a, b, and c), with points in different colors representing different
traits.

(B) The numbers of candidate QTLs identified in the GWAS of parental lines,
FiGenotypeo12, and FiGenotypeo1, along with their co-localization patterns. The bar chart
shows the number of co-localized QTLs for each category, with specific numbers
provided. The points and lines below indicate the co-localization relationships between
different categories, and the right-side bar chart represents the total number of QTLs

identified in each of the three categories.
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Figure 4. GWAS Analysis of Seven Traits and Identification and Functional
Validation of Grain Width Candidate Genes.

(A) GWAS of grain width in chromosome 5, the y-axis represents the -logio(P) values.
Red points represent SNPs significantly associated with grain width.

(B) The local Manhattan plot for the candidate gene and the LD haplotype block map.
(C) The predicted domain of protein OsGRWS5.1

(D) Nucleotide variation in promoter and exon region of OsGRWS5.1.

(E) Haplotype network of OsGRWS5.1.

(F) Comparison of grain width across different haplotypes of OsGRWS5. 1.

(G) Comparison of thousand grain weight across different haplotypes of OsGRWS. 1.
(H-M) Functional analysis of OsGRWS.1. Genotypic identification of CRISPR/Cas9
knockout mutant. The bold sequence represents the target site, and the red box indicates
the PAM sequence (H). Phenotypic comparison of grain width (I), grain length (J) and
thousand grain weight between the wild-type and mutant plants. The scale bar is 1 cm.

Statistical significance (P-value) was calculated using a T-test for K, L, and M.
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Figure 5. Hybrid Superiority Analysis of F1 GWAS and Gene Loci.

(A) The significant SNP loci for seven traits (FLW, GL, GW, HD, PH, PL, and TGW)
and their corresponding dominance (d/a). The x-axis represents the -logio(P) values of
the SNP loci, and the y-axis shows the dominance (d/a) values.

(B) The Pearson correlation between the cumulative number of superior heterozygous
alleles and phenotypic values for seven traits. The x-axis represents the cumulative
number of superior heterozygous alleles, and the y-axis represents the corresponding
phenotypic values for each trait.

(C) The distribution map of unique advantageous haplotypes on the chromosomes in
946 germplasm resources, where different colors represent different traits.

(D) The distribution of unique advantageous haplotypes in the 52 superior parental lines.
(E) The subgroup origins of unique advantageous haplotypes in 946 germplasm

reésources.
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Figure 6. Utilizing Germplasm Resources for Genetic Improvement of Hybrid
Rice.

The collection and introduction of globally diverse germplasm resources have enhanced
diversity by over 65%. A GWAS on the germplasm and Fi populations identified 45%
of unique advantageous haplotypes that can be used to improve hybrid parent lines
(restorer lines and sterile lines). The hybrid combination phenotypic prediction, using
the 770 hybrid Fi population as a training set, predicted a total of 446,985 hybrid
combinations. This approach facilitated the selection of superior hybrid combinations,

thereby guiding hybrid breeding and reducing the breeding workload by 95%.
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