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Short summary: 26 

Based on a large-scale analysis of 2,088 germplasms and 770 hybrid rice combinations, 27 

this study demonstrates that landraces significantly contribute to heterosis and yield-28 

related traits. This research identified 105 novel QTLs and validated the role of 29 

OsGRW5.1 in regulating grain width and weight through gene editing. A predictive 30 

platform of phenotypic performance was developed for potential hybrid combinations, 31 
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providing valuable resources for future rice breeding. 32 

Abstract 33 

Hybrid rice has made significant contributions to global food security. However, the 34 

efficient utilization of landraces to further enhance heterosis remains a key challenge in 35 

rice breeding. In this study, we collected a set of 1,392 landraces and 696 hybrid rice 36 

parental lines. A total of 770 hybrid combinations were constructed by crossing of 517 37 

accessions selected from 2,088 rice accessions and seven key yield-related traits were 38 

collected. Nearly 500,000 potential hybrid combinations were predicted, 39 

comprehensive analysis revealed that landraces from South Asia played a significant 40 

role in improving multiple traits. Further investigation revealed substantial variation in 41 

the landraces contribution to the optimal hybrid combinations for various traits, with 42 

landraces particularly contributing to improvements in grain width. We identified 171 43 

QTLs for seven traits using three association analysis methods. Of these QTLs, 77 44 

known genes were identified within 66 QTLs and 105 novel QTLs without any known 45 

genes nearing to them. Gene editing based on CRISPR/Cas9 method showed that 46 

OsGRW5.1 plays a critical role in regulating grain width and grain weight. Additionally, 47 

a strong correlation was also observed between advantageous haplotypes accumulating 48 

and phenotypic performance enhancing in our findings. More than 45% of the 49 

advantageous haplotypes derived from landraces are likely to play a significant role in 50 

future hybrid rice improvement. A predictive platform was developed that can output 51 

all the seven phenotypes of potential hybrid combinations with a given genotype of 52 

both parents. This research provides valuable data and practical insights for enhancing 53 

heterosis through the efficient utilization of landraces. 54 

 55 

Key words: Heterosis; Landraces; Germplasm diversity; Genomic selection; Hybrid 56 

rice 57 
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Over the past fifty years, the widespread adoption of hybrid rice has greatly 59 

enhanced food security and increased farmers' incomes in China. Heterosis (hybrid 60 

vigor) has been widely applied in staple crops such as rice and maize because of its 61 

proven ability to boost yield and improve adaptability (Cheng et al., 2007). However, a 62 

significant challenge persists in effectively and efficiently utilizing the diversity of 63 

landraces to further amplify heterosis (Melchinger, 1999), which continues to limit 64 

progress in crop improvement (Hochholdinger and Yu, 2025). 65 

Landraces provide a valuable genetic pool for rice improvement, offering a wide 66 

range of genetic diversity that enhances yield, strengthens disease resistance, improves 67 

quality, and supports adaptation to climate change (Song et al., 2024; Zheng et al., 2024). 68 

The historical progress of hybrid rice has relied heavily on these diverse landraces. For 69 

example, the development of cytoplasmic male sterility (Luo et al., 2013) and the 70 

introduction of restorer genes from Southeast Asian germplasm make the utilization of 71 

heterosis in practicable (Zhao et al., 2023). The discovery of photo-thermosensitive 72 

genic male sterility (Ding et al., 2012; Fan et al., 2016; Zhou et al., 2012b; Zhou et al., 73 

2014) have significantly expanded the range of hybrid rice combinations by utilizing 74 

broader genetic backgrounds. For instance, the introduction of the Xa21 gene has 75 

greatly enhanced rice disease resistance (Song et al., 1995), while the Gn1a gene has 76 

significantly increased yield per unit area (Ashikari et al., 2005). These innovations 77 

have improved rice adaptability to high disease pressure and high-density planting 78 

conditions, laying the foundation for future high-yield, resilient varieties (Zhang et al., 79 

2021). 80 

However, in the current breeding system, most breeders tend to improve existing 81 

parental lines that are high-performing, stable, and easily hybridized (Khan et al., 2015; 82 

Wu et al., 2018). While this approach has improved breeding efficiency in the short 83 

term, it has also led to the underutilization of potentially valuable landraces and wild 84 

relatives gene resources. Although a significant exponential relationship persists 85 

between hybrid cultivar numbers and total cultivar counts across ten major hybrid rice-86 

producing provinces, the cultivar diversity index has approached saturation thresholds 87 

(Huang, 2022). Over the course of breeding, the emphasis on traits such as high yield, 88 
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disease resistance, and stress tolerance has caused the parent pool to converge, with 89 

many parents sharing highly similar genetic backgrounds (Chen et al., 2021). The 90 

cultivation area of currently major rice varieties in China (https://www.natesc.org.cn/) 91 

reveal that the genetic similarity among current parents had exceeded 90%, significantly 92 

constraining the potential for enhancing heterosis in hybrid breeding. Although 93 

broadening the genetic base is widely recognized as a key strategy for enhancing hybrid 94 

rice (Gao et al., 2022), the low utilization rate of landraces and the substantial workload 95 

involved in hybridization experiments remain significant challenges in the breeding 96 

process. 97 

In recent years, modern computational techniques, particularly the application of 98 

machine learning, have enabled rapid prediction and optimization of hybrid 99 

combinations (Gu et al., 2023). However, the prediction still requires hybrid 100 

combinations based on diverse landraces as its foundation (Martini et al., 2021). This 101 

study collected 2,088 rice accessions and carefully selected parental lines for 102 

hybridization based on their genetic background, geographical distribution, and 103 

agronomic traits, resulting in the construction of 770 hybrid combinations. We 104 

conducted in-depth analyses of seven key yield agronomic traits and generated a dataset 105 

of nearly 500,000 potential hybrid combinations using computational techniques. By 106 

analyzing these combinations, we identified distinct patterns of heterosis within the 107 

landraces that could potentially enhance parental performance. Furthermore, we 108 

developed a hybrid combination prediction platform capable of forecasting the 109 

phenotypic performance of potential hybrid combinations based on genotype data. This 110 

study provides valuable data support and practical insights for improving heterosis in 111 

hybrid rice through the efficient utilization of landraces. 112 

  113 
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Results 114 

Genetic Diversity Differences Between Rice Germplasm and Hybrid Rice Parents 115 

To enhance the efficient utilization of landraces in hybrid rice breeding, we sequenced 116 

946 accessions landraces and integrated 1,142 publicly available accessions, resulting 117 

in a total of 2,088 rice accessions. This collection includes 1,392 landraces from 18 118 

major rice-producing countries across Asia, representing six global subgroups 119 

(Supplemental Table 1). Additionally, it comprises 321 sterile lines and 375 restorer 120 

lines, collected since the 1980s. These materials reflect key hybrid rice-growing regions 121 

in China, capturing significant ecological and agricultural diversity (Supplemental 122 

Table 1), spanning key periods during which human domestication and breeding have 123 

evolved substantially. 124 

A total of 11.5 Tb of clean reads were obtained, leading to the identification of 125 

1,365,785 high-quality SNPs following a series of stringent filtering steps. Phylogenetic 126 

relationships and principal component analysis (Figure 1A and Supplemental Figure 127 

1A) revealed that 2,088 rice accessions could be divided into six subgroups: 149 AUS, 128 

744 Indica1 (IND1), 626 Indica2 (IND2), and 297 Indica3 (IND3), all of which belong 129 

to Oryza sativa ssp. indica; 107 Tropical japonica (TRJ) and 123 Temperate japonica 130 

(TEJ), all of which belong to O. sativa ssp. japonica. And it includes 42 intermediate 131 

accessions. Among them, the restorer lines were mainly concentrated in IND1 (345 132 

accessions), with a small number distributed in IND2 (22 accessions). The sterile lines 133 

were predominantly found in IND2 (278 accessions), with only a limited number 134 

observed in IND1 (34 accessions; Supplemental Table1). 135 

To gain a deeper understanding of the genomic differences between hybrid rice 136 

parents and landraces, we compared the differentiated SNPs (Figure 1B) and the 137 

nucleotide diversity (π; Figure 1C) among them. The results showed that the most 138 

significant SNP differentiated were observed between TEJ and the hybrid rice parent 139 

(IND1), with 1,176,054 differentiated SNPs. Similarly, TEJ also had 1,134,240 140 

differentiated SNPs compared to the hybrid rice parent (IND2). Following this, the 141 

differences between TRJ and IND1 and IND2 were also significant, with 816,897 TRJ-142 

IND1 differentiated SNPs and 780,526 TRJ-IND2 differentiated SNPs. In contrast, the 143 

Jo
urn

al 
Pre-

pro
of



differences between AUS and IND1 were 399,600 differentiated SNPs, and between 144 

AUS and IND2, 386,886 differentiated SNPs. The smallest differences were found 145 

between IND3 and the sterile and restorer lines of IND1 and IND2, with 22,457 and 146 

23,488 unique SNPs, respectively. GO functional enrichment analysis revealed that 147 

genes associated with above SNPs were enriched in key biological processes, such as 148 

protein synthesis, metabolic regulation, and energy management (Supplemental Figure 149 

1B). These processes may influence rice growth, development, and stress resistance. 150 

We further calculated π values for the landrace subgroups and the sterile and restorer 151 

lines. The average π value of landraces in the IND1 subgroup is 0.001300, compared to 152 

0.001235 for restorers and sterile lines. In IND2, the landraces π value is 0.001470, 153 

while restorers and sterile lines have a π value of 0.001285. The average π values for 154 

IND3, AUS, TEJ, and TRJ are 0.003226, 0.003000, 0.000991, and 0.002315, 155 

respectively, indicating that landraces exhibited higher genetic diversity. These findings 156 

suggest that landraces may provide potential genetic variation and resources for hybrid 157 

rice improvement. 158 

Prediction and Heterosis Analysis of Hybrid Combinations Based on Multi-Trait 159 

for Landraces 160 

We selected 517 accessions (Supplemental Table 2) from a collection of 2,088 rice 161 

accessions as parental lines for subsequent hybrids, including 298 indica (IND) rice, 92 162 

AUS, 72 Temperate japonica (TEJ), 44 Tropical japonica (TRJ), and 11 intermediate 163 

(IM) rice. These parental lines represent a wide geographic distribution across all target 164 

countries and encompass over 99.97% of the diversity in agronomic traits. We 165 

successfully generated 770 F1 hybrids including 335 IND-IND, 92 IND-TEJ, 60 IND-166 

TRJ, 150 IND-AUS, 15 TEJ-AUS, 16 TRJ-AUS, 48 AUS-AUS, 15 TEJ-TEJ, 6 TEJ-TRJ 167 

and 1 TRJ-TRJ crosses and 32 hybrids based on IM rice (Supplemental Table 2) 168 

developed from these selected parental lines and collected 176 commercially cultivated 169 

hybrids. These hybrids, spanning multiple countries and rice subgroups, offer a solid 170 

foundation for systematically analyzing the agronomic traits of hybrids from diverse 171 

landraces for the first time. We collected data on seven key traits from these hybrids in 172 

Hainan, including flag leaf width (FLW), grain length (GL), grain width (GW), heading 173 
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date (HD), plant height (PH), panicle length (PL), and thousand grain weight (TGW).  174 

To gain a more comprehensive understanding of the agronomic traits of hybrid 175 

combinations derived from 2,088 rice accessions, we developed our predictive models 176 

based on existing hybrids. Therefore, the simplified linear model, which is usually used 177 

to measure the additive effect, is chosen as the prediction method in this study. We 178 

conducted a simulated comparison of three main types of simplified linear models (Xu 179 

et al., 2016; Xu et al., 2014), including parametric models (e.g., GBLUP, LASSO, EN, 180 

and BayesB), semi-parametric models (e.g., RKHS), and machine learning models (e.g., 181 

SVM, LightGBM, and XGBoost). The analysis results showed that the prediction data 182 

based on GBLUP exhibited the most robust performance across all seven traits (from 183 

0.51 to 0.63; Figure 2A, Supplemental Figure 2B and C) compared to the other seven 184 

methods. Based on these results, we concluded that GBLUP outperformed than other 185 

models in multi-trait prediction which is suitable as the final prediction tool. 186 

To optimize the accuracy and efficiency of the GBLUP method for rice phenotypic 187 

prediction, we assessed the effects of training population size and hybrid combinations. 188 

Our results revealed that prediction accuracy improved and stabilized when the training 189 

population exceeded 700 hybrids (Figure 2B, Supplemental Table 3-4), ensuring 190 

reliable predictions for HD (0.517), FLW (0.278), TGW (0.324), GW (0.611), PH 191 

(0.554), PL (0.425), and GL (0.471). Further analysis the effects of genetic background 192 

showed that hybrids with both parents present achieved the highest prediction accuracy, 193 

such as HD (0.640), PH (0.733), and GW (0.633), while single-parent hybrids 194 

demonstrated reduced accuracy, including TGW (0.301) and PL (0.235) indicating the 195 

impact of missing genetic information on certain traits (Figure 2C). However, it is 196 

noteworthy that hybrids without parental involvement still maintained relatively high 197 

accuracy for specific traits, such as HD (0.851), GW (0.992), and GL (0.660), 198 

highlighting the robustness of the GBLUP method (Figure 2C). our findings confirmed 199 

that an appropriately size of training population is crucial for ensuring GBLUP’s 200 

accuracy, while genetic background plays a significant role in prediction performance. 201 

Even without parental data, GBLUP remains effective, underscoring its broad 202 

applicability in genomic selection breeding. 203 
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To assess the agronomic performance of all 446,985 hybrid combinations, we 204 

calculated the positive mid-parent heterosis (MPH) values for each predicted 205 

combination across multiple phenotypic traits (Figure 2D). A total of 125 varieties 206 

exhibited positive MPH in more than 40% of combinations for five traits. Additionally, 207 

52 varieties showed positive MPH in more than 60% of combinations for five traits. 208 

Only two varieties demonstrated positive MPH in more than 40% of combinations for 209 

six traits. Notably, no variety exhibited positive MPH in more than 60% of six traits 210 

(Figure 2E). We then conducted an in-depth analysis of the geographical and genetic 211 

characteristics of the 52 superior varieties. The results revealed that 38 of these varieties 212 

primarily originated from South Asia, 6 of these varieties from East Asia, and 8 of these 213 

varieties from South East Asia (Figure 2F) and were classified into four major groups 214 

(Figure 2G): IND (21 varieties), AUS (11 varieties), TEJ (4 varieties), and TRJ (16 215 

varieties). Further analysis of the distribution of hybrid combinations showed that these 216 

superior hybrids were predominantly concentrated in South Asia/East Asia (37.6%), 217 

South Asia/South Asia (27.6%), and South Asia/Southeast Asia (18.5%) (Figure 2H). 218 

Additionally, the most common hybrid types among these combinations were IND/TRJ 219 

(22.9%), IND/IND (22.6%), and IND/AUS (18.6%) (Figure 2I). 220 

The phenotypes of a total of 2,088  2,088 hybrid combinations were predicted 221 

based on 770 hybrids. Analysis of the top 100 hybrid combinations across six traits 222 

revealed the contributions of landraces in hybrids combinations (Supplemental Table 223 

5). For GW and PL, all top-performing combinations (100%) had at least one parent 224 

derived from landraces. In contrast, 59% of the top combinations for PH included at 225 

least one landrace parent (Figure 2J). The presence of landraces was lower in the top 226 

combinations for HD and TGW, at 38% and 35%, respectively. Notably, landraces were 227 

completely absent from the top-performing combinations for GL (Figure 2J). These 228 

findings suggest that landraces contribute differently to various traits, playing a 229 

particularly important role in GW and PL improvement for future breeding programs 230 

(Figure 2K-H). 231 

To ensure users easily utilizing the predictive platform of our constructed models, 232 

we developed a user-friendly online platform within Predicting Rice Germplasm 233 
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Hybrid Phenotype (PRGHP) web platform (https://hybrice.cn/). Anyone can access the 234 

nine predictive traits by selecting the parent lines. If users wish to predict their own 235 

materials using our models, they can process their genotype data according to the 236 

pipeline described in the support webpage, upload the genotype file, and download for 237 

the results once the task is complete. 238 

GWAS uncovers potential genes associated with heterosis 239 

Heterosis is generated by dominance effects, overdominance effects, and epistasis. To 240 

gain a more comprehensive understanding of the genomic basis of heterosis in rice, we 241 

employed three methods to analyze the genetic basis influencing seven key agronomic 242 

traits in rice. First, a mixed linear model (MLM) incorporating Q+K covariates was 243 

used for genome-wide association studies (GWAS) on 946 landraces, focusing on 244 

additive and dominance effects, identifying 8,842 SNPs and 86 QTLs significantly 245 

associated with the phenotype (-log10(P) > 5). Second, we applied F1Genotype01 GWAS to 246 

770 F1 populations, encoding SNPs as either 0 or 1 to identify loci associated with 247 

dominant effects (Tan and Ingvarsson, 2022). A total of 5,443 SNPs and 62 QTLs were 248 

identified that were significantly associated with phenotype. Lastly, we conducted 249 

F1Genotype012 GWAS on 770 F1 populations, treating the number of minor alleles (0/1/2) 250 

as a continuous variable to assess additive effect loci, assuming each additional minor 251 

allele has the same genetic impact, thereby revealing the independent contributions of 252 

parental alleles and heterozygous alleles the influence of additive effects on phenotypes, 253 

identifying 3,657 SNPs and 51 QTLs significantly associated with seven traits. In total, 254 

171 QTLs were detected across the three methods, of these, 77 known genes located 255 

within 66 QTLs, and 105 new QTLs were discovered (Figure 3A and B, Supplemental 256 

Table 6-8). We compared the haplotypes of those 77 known genes revealed that the 257 

causal variants in 19 genes matched those reported in the previously study (Wei et al., 258 

2021). 259 

OsGRW5.1 positively regulates grain width and weight in rice 260 

Grain width is a key quantitative trait that influences thousand-grain weight, which 261 

is one of the three major factors determining rice yield. Comparative analysis of QTLs 262 

for grain width and thousand-grain weight revealed that significant loci for grain width 263 
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(qGW5.1, 130 Kb) and thousand-grain weight (qTGW5.1, 132 Kb) were co-localized in 264 

the same region, suggesting that they may represent the same QTL (Figure 3A). Gene 265 

function annotation and haplotype-phenotype association analysis of the 24 genes 266 

within the qGW5.1 region identified LOC_Os05g01710, named OsGRW5.1 (Grain-267 

related Width and Weight 5.1; Figure 4A-B), as being functionally related to both grain 268 

width and grain weight, with its haplotype also significantly associated with these two 269 

traits (Supplemental Table 6). This gene encodes a transcription initiation factor IIAγ 270 

(OsTFIIAγ5) containing four helix-bundle domains and three -sheet domains, which 271 

suggested to be a cofactor that required for transcription by RNA polymerase II (Figure 272 

4C) (Iyer-Pascuzzi and McCouch, 2007). We identified 24 SNPs in the promoter (2 Kb) 273 

and coding regions of OsGRW5.1, which can be categorized into 7 major haplotypes 274 

(Figure 4D and Supplemental Table 9). Haplotype network analysis revealed that these 275 

haplotypes can be grouped into four distinct clusters. Group A, consisting of Hap1 and 276 

Hap2, primarily includes TEJ and TRJ landraces and shows the largest grain width (3.35 277 

mm) and highest thousand-grain weight (26.15 g) compared to other groups. Group C, 278 

composed of AUS and IND landraces, exhibits the narrowest grain width (3.05 mm) 279 

and lowest thousand-grain weight (25.70 g). Group D consists solely of Hap3, mainly 280 

found in AUS, with a slender grain shape (3.09 mm) and lower thousand-grain weight 281 

(22.80 g). Group B, composed exclusively of IND, shows a similar grain width (2.92 282 

mm) to Group D, but with a thousand-grain weight similar to Group A (22.55 g) (Figure 283 

4E-G). To further validate the function of OsGRW5.1 in regulating grain width and 284 

thousand-grain weight, we used CRISPR/Cas9 technology to knock out OsGRW5.1 and 285 

generated two independent knockout transgenic lines (Figure 4H). The results showed 286 

that the grain width (3.35 mm) and thousand-grain weight (20.04 g) of OsGRW5.1 287 

knock out lines were significantly lower than those of the wild-type Nipponbare variety 288 

(3.44 mm and 21.39 g) (Figure 4I-M), confirming the role of OsGRW5.1 in regulating 289 

rice grain width and its potential to improve both rice appearance quality and yield. 290 

Hybrid vigor analysis of genetic loci 291 

To evaluate the dominance effect size of the loci, the heterotic loci and the 292 

dominance/overdominance effects were analyzed. We evaluated the effects of 293 
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heterozygous loci for the peak SNPs above the suggestive P value (FLW, GL, GW, HD, 294 

PH, PL, and TGW) in Sanya. 1,361 loci were used for final analysis. We found that 295 

most loci (81%) showed incomplete dominance effects in F1 GWAS. There were 340 296 

loci with strong overdominance effects (86 with positive effect and 254 with negative 297 

effect (Figure 5A, Supplemental Figure 3A). To determine whether the accumulation 298 

of dominant heterozygous genotypes in the 770 F1 hybrids is associated with phenotypic 299 

enhancement, we performed correlation analysis between the genotypes of significant 300 

loci and their corresponding phenotypes. First, dominant heterozygous genotypes were 301 

identified among the significant loci, and then the correlation between the number of 302 

dominant heterozygous genotypes and phenotypic improvement was calculated. The 303 

results show that the accumulation of dominant heterozygous genotypes from both 304 

F1Genotype01 and F1Genotype012 GWAS datasets is correlated with improved phenotypic 305 

performance (Figure 5B, Supplemental Figure 3B). Notably, heading date exhibited the 306 

highest correlation in both GWAS results (0.40 and 0.33), while flag leaf width showed 307 

the lowest correlation in both datasets (0.10 and 0.10). Overall, the accumulation of 308 

dominant heterozygous genotypes was strongly correlated with phenotype (Figure 5B, 309 

Supplemental Figure 3B), which can enhance phenotypic expression and contribute to 310 

hybrid vigor. Additionally, we performed haplotype analysis to further investigate the 311 

correlation between gene haplotypes and phenotypes. These results show that the 312 

effects of favorable haplotypes accumulation are better than the accumulation of 313 

dominant heterozygous locus (Supplemental Figure 3C). 314 

Divergence of favorable alleles accumulation in hybrids parents and landraces 315 

Since rice is a self-pollinating crop, during the process of artificial selection, certain 316 

favorable gene combinations become fixed across a large number of materials, resulting 317 

in the same beneficial genes appearing in the parental lines. This leads to a limitation 318 

in further enhancing the hybrid heterosis. A comprehensive haplotype analysis was 319 

performed on 120 candidate genes that previously identified through GWAS in 946 320 

landraces. Among them, 12 are associated with FLW, 14 with GL, 22 with GW, 14 with 321 

HD, 15 with PH, 23 with PL, and 20 with TGW. The results showed that 37 candidate 322 

genes (30.8%) with superior haplotypes were highly prevalent, present at a frequency 323 
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of 80-100%, while 24 candidate genes (20.0%) with superior haplotypes demonstrated 324 

substantial presence at 60-80% frequency. Moderate frequency distribution (40-60%) 325 

of superior haplotypes was observed in 8 candidate genes, whereas 15 candidate genes 326 

(12.5%) show relative low frequency (20-40%). Notably, 36 candidate genes were 327 

identified as rare superior haplotypes that present a frequency below 20%. However, 328 

the haplotype analysis of 368 restorer lines and 312 maintainer lines showed a distinct 329 

distribution pattern compared to the landrace accessions. Among them, approximately 330 

half of the candidate genes with superior haplotypes were primarily distributed within 331 

a frequency range of 80-100% in the 368 restorer lines (46.7%) and 312 maintainer 332 

lines (42.5%). Additionally, candidate genes with superior haplotypes in the frequency 333 

range of 80%-20% were relatively lower distributed in the 368 restorer lines (5%) and 334 

312 maintainer lines (18.3%). A total of 58 candidate genes (48.3%) with superior 335 

haplotypes were unique to the germplasm resources, mainly distributed on 336 

chromosomes 5 and 8 (Figure 5C), and had a high proportion in 52 elite parental lines. 337 

Among them, five parental lines had a specific superior haplotype distribution 338 

frequency of 0-20%, 29 parental lines had a frequency of 20-40%, and 18 parental lines 339 

had a frequency of 40-60% (Figure 5D). These 58 superior haplotypes were primarily 340 

derived from different subpopulations: 3 from AUS, 9 from IND, 24 from TEJ, and 20 341 

from TRJ (Figure 5E). However, they were not fixed in the 368 restorer lines and 312 342 

maintainer lines. 343 

Discussion 344 

Heterosis, or hybrid vigor, remains a century-old challenge in crop genetics. While 345 

numerous studies have supported three major hypotheses-dominance, overdominance, 346 

and epistasis (Hua et al., 2003; Huang et al., 2016; Zhou et al., 2012a). Most findings 347 

remain at the QTL level, lacking gene-level resolution. In rice, heterosis manifests as a 348 

complex organism-wide phenomenon, evident as early as syncytium formation during 349 

embryogenesis, influencing gene expression, cell size, and metabolic efficiency (Gu 350 

and Han, 2024; Gu et al., 2023; Huang et al., 2015; Jahnke et al., 2010). In this study, 351 

we analyzed 946 landraces and 770 F1 hybrids using GWAS across seven agronomic 352 

traits. A total of 171 QTLs were identified (86 in landraces, 62 in F1Genotype012, and 51 in 353 

Jo
urn

al 
Pre-

pro
of



F1Genotype01), with 25 QTLs shared across populations. Within these QTL intervals, we 354 

identified 66 QTLs co-localized with 77 known genes. Notably, OsGRW5.1, located on 355 

the short arm of chromosome 5, was validated as a key gene influencing grain width 356 

and thousand-grain weight through CRISPR/Cas9 analyses. Particularly, OsGRW5.1 357 

containing a nonsynonymous variant (T/A, 437,499 bp) in the second exon region 358 

(Figure 4D). Further haplotype analysis revealed that Group A and Group B showing 359 

strong yield-enhancing effects (Figure 4F-M). Additional investigations, such as 360 

genetic complementation assays, the base transversion editing A-to-T could further 361 

validate its function in improving grain yield. 362 

Predictive ability is influenced by marker density, training population size, the 363 

relationship of training population and the testing sample, heritability, the linkage 364 

disequilibrium (LD) of markers and QTL, ranged from 0.15 to 0.85 with different 365 

population and phenotype (Voss-Fels et al., 2019; Xu et al., 2021). In this study, we 366 

generated a hybrid panel from IND, JAP, and AUS lines and predicted the performance 367 

of 2,088 possible hybrid combinations using GBLUP. Prediction accuracies ranged 368 

from 0.278 to 0.611. Among the top 100 predicted combinations for grain yield traits, 369 

all contained at least one landrace parent, confirming their potential in hybrid 370 

improvement. Pan-genome analysis has shown that variable genes, rather than core 371 

genes, are critical for crop improvement (Qin et al., 2021). We found that hybrid 372 

genomes contain more variable genes than either parent, and their complementary may 373 

underpin heterosis (Hochholdinger and Yu, 2025). However, modern parental lines 374 

often show fixation of elite alleles, limiting diversity. Analysis of 120 genes 375 

significantly associated with local varieties GWAS showed that about 40% of the 376 

dominant haplotypes were found in the 696 hybrid rice parent materials, but more than 377 

45% of the dominant haplotypes were endemic to landraces. These findings highlight 378 

the untapped value of landrace alleles for improving hybrid vigor.  379 

Genetic dissection of key agronomic traits in rice not only advances the theoretical 380 

understanding of the molecular mechanisms underlying yield but also provides 381 

practical guidance for breeding programs (Fukuoka et al., 2010). Heterosis leverages 382 

diverse variation to enhance not only grain yield but also disease resistance, stress 383 
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tolerance, and environmental adaptability. Through whole-genome association analysis, 384 

heterosis-related loci can be identified and subsequently utilized via marker-assisted 385 

selection, gene editing, and the accumulation of superior haplotypes containing 386 

additive-effect QTLs (Liu et al., 2022). These approaches collectively contribute to the 387 

improvement of major traits, the enhancement of parental lines, and the acceleration of 388 

hybrid breeding cycles. Furthermore, the genetic analysis and predictive modeling of 389 

heterosis can facilitate the efficient selection of high-performing hybrid combinations, 390 

boosting both yield and grain quality. By integrating genome selection and landrace-391 

derived haplotypes into breeding programs, we can use materials with superior 392 

haplotypes improving these male sterile and restorer lines and design new parental 393 

combinations with greater heterotic potential, offering a promising strategy to enhance 394 

yield and maintain food security under environmental and demographic pressures 395 

(Figure 6). 396 

  397 
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Materials and Methods 398 

Plant Materials 399 

The 2,088 rice accessions used in this study include 1,392 samples from 18 major rice-400 

producing countries in Asia, representing local varieties from six rice populations 401 

worldwide (Supplemental Table 1). Among these, 836 samples were introduced from 402 

the International Rice Research Institute (IRRI), sourced from regions such as East Asia, 403 

South Asia, and Southeast Asia, primarily consisting of indica and japonica rice 404 

varieties, as well as Aus and Basmati varieties. Additionally, the collection includes 321 405 

cytoplasmic male sterility (CMS) lines and 375 restorer lines, directly collected since 406 

the 1980s. These materials include 211 CMS lines, 110 gametocidal male sterility 407 

(GMS) lines, 294 three-line hybrid rice (3R) varieties, and 81 two-line hybrid rice (2R) 408 

varieties, totaling 696 samples. These materials represent the parental lines of most 409 

indica hybrid rice varieties widely cultivated in southern China over the past 50 years. 410 

To fully represent the comprehensively diversity of 2,088 local rice varieties, we 411 

selected accessions for hybrid combinations based on three key factors: geographical 412 

distribution, genetic diversity, and phenotypic variation. As a result, 517 representative 413 

accessions were selected for crossing. The selection process was as follows: 414 

Geographical distribution: The 517 selected lines were proportionally sampled from 415 

major rice-growing regions covered by the 2,088 local varieties. This ensured broad 416 

ecological and regional representation among the chosen parents. Genetic diversity: To 417 

assess how well the selected lines represented the overall genetic variation, we 418 

calculated the Shannon-Wiener diversity index based on seven key agronomic traits. 419 

First, the mean and standard deviation of each trait were calculated across all samples. 420 

Each trait was then categorized into three levels (low, medium, high) based on its 421 

distribution. Diversity indices were computed for each trait and averaged to obtain an 422 

overall diversity value. The results showed that the selected 517 lines retained 99.97% 423 

of the total phenotypic diversity observed in the 2,088 local varieties. Phenotypic traits: 424 

Synchronization of flowering time was also prioritized during selection to facilitate 425 

effective field crossing. This approach enabled efficient random mating in the field, 426 

ultimately resulting in the development of 770 F1 hybrid combinations. 427 
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Plant materials and phenotyping. 428 

Phenotyping of local landraces: In the winter seasons of 2018 and 2019, we conducted 429 

systematic phenotyping of 946 rice landrace accessions in Lingshui, Hainan (18.25°N, 430 

109.51°E). Crossing procedure: In the summer of 2020, the 946 landrace accessions 431 

were planted at the Guangxi Academy of Agricultural Sciences to facilitate large-scale 432 

crossing and ensure crossing efficiency and success rates. During crossing, hot water 433 

emasculation was used to inactivate the pollen viability of the female plants. Once the 434 

anthers extruded from the lemma and palea, manual removal was conducted promptly, 435 

and the panicles were immediately bagged to prevent contamination from external 436 

pollen during the crossing process. This method effectively reduced the difficulty and 437 

labor intensity of manual emasculation while enabling the acquisition of sufficient F1 438 

seeds for subsequent phenotyping. Verification of hybridization: After obtaining the F1 439 

seeds, we conducted molecular marker genotyping on both the parents and the F1 440 

hybrids to verify the success of the hybridization. Only those hybrids confirmed to be 441 

successful were used for subsequent phenotyping, ensuring the accuracy and reliability 442 

of the data. Phenotyping of F1 hybrids: In the winter of 2020, 770 verified F1 hybrids 443 

were planted in Lingshui, Hainan for systematic phenotyping. 444 

In the spring of 2024, a randomized block design was employed to plant and 445 

phenotypically assess T1 generation OsGRW5.1 gene knockout mutants and wild-type 446 

plants in Beijing (latitude 39.9042°N, longitude 116.4074°E). Each genotype was 447 

planted in 2 rows with 10 plants per row and a spacing of 20 cm × 20 cm. The main 448 

traits measured included grain width and 1000-grain weight. 449 

DNA isolation and genome sequencing. 450 

Genomic DNA was extracted from leaf samples using the CTAB method (Doyle and 451 

Doyle, 1987), and the quality of the extracted DNA was assessed. The DNA library for 452 

re-sequencing was constructed using the TruSeq Nano DNA HT kit (Illumina, San 453 

Diego). First, the genomic DNA was randomly fragmented using ultrasonic waves, and 454 

DNA fragments of approximately 350 bp were selected as the target size. After 455 

electrophoretic recovery of these fragments, adapters were ligated to both ends, 456 

followed by PCR amplification (Saiki et al., 1988). The size distribution of the 457 
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amplification products was assessed using an Agilent 2100 Bioanalyzer, and the library 458 

was precisely quantified using quantitative PCR. The constructed library was then 459 

subjected to paired-end sequencing according to the standard protocol of the Illumina 460 

HiSeq 4000 platform (Illumina, San Diego). 461 

Sequence quality checking and filtering. 462 

We first performed quality control (QC) and adapter trimming on the raw sequencing 463 

data using the fastp tool (Chen et al., 2018). During the QC process, the following types 464 

of reads were excluded: (1) reads containing more than 10% unrecognized bases; (2) 465 

reads shorter than 50 bp; (3) reads with a quality score of Q < 15; and (4) low-quality 466 

reads where more than 50% of the bases had a Q-score ≤ 5. After quality control 467 

processing, the data were aligned to the reference genome NIP (Oryza sativa L. var. 468 

Nipponbare, MSU v7.0) using BWA-MEM (Li and Durbin, 2009) with the parameters: 469 

mem-T4-K3-M-R. Subsequently, variant detection was performed using the GATK 470 

HaplotypeCaller (McKenna et al., 2010) module, generating initial variant sites. To 471 

ensure high-quality variants, four filtering criteria were applied: QD < 4.0, FS > 200.0, 472 

SOR > 10.0, and ReadPosRankSum < -20.0, resulting in a final VCF file. In population 473 

analysis, low-frequency alleles and alleles with high missing rates or high 474 

heterozygosity can impact the accuracy of the results. Therefore, we further filtered the 475 

SNP sites using VCFtools (Danecek et al., 2011), removing the following sites that did 476 

not meet the criteria: (1) non-biallelic SNP sites; (2) sites with a minor allele frequency 477 

(MAF) < 0.05; (3) sites with a missing rate > 0.25; (4) sites with a heterozygosity rate > 478 

0.8. 479 

VCF file integration. 480 

We used the merge command in bcftools (Li, 2011) (v1.10) to merge the VCF files from 481 

the two populations. To ensure the accuracy of the merging process, we first indexed 482 

each VCF file and generated the corresponding .csi index files using the bcftools index 483 

command. Subsequently, the VCF files from the two populations were merged using 484 

the bcftools merge command. This command integrated the variation data from all 485 

samples into a new VCF file based on the genomic positions and genotypic information 486 

of each variant. If the variant sites differed between the populations, the merged file 487 
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retained all unique variants and filled missing values for the absent sites. After the 488 

merging process was completed, the bcftools stats command was used to perform 489 

quality checks on the merged VCF file to verify the success of the merge, including 490 

checking the integrity of the variant sites, completeness of the sample information, and 491 

ensuring the accuracy of all variant and sample data. Following the quality control of 492 

the merged VCF file, we further filtered the variant sites using the following four 493 

criteria: 1) minor allele frequency (MAF) ≥ 0.05; 2) missing rate (max-missing) ≤ 0.75; 494 

3) minimum number of alleles (min-alleles) = 2; 4) maximum number of alleles (max-495 

alleles) = 2. These filtering criteria ensured the quality of the variant data while 496 

retaining meaningful variant sites for population genetic analysis and association 497 

studies. The final VCF file, after rigorous filtering, was suitable for subsequent 498 

population structure analysis and association studies. 499 

Clustering and Principal Component Analysis. 500 

The Neighbor-Joining Phylogenetic Tree (NJ) is a tree diagram used to describe the 501 

phylogenetic relationships among different varieties or populations, based on genetic 502 

characteristics to assess the degree of relatedness between groups. We constructed a 503 

phylogenetic tree for the 2,088 samples using the Neighbor-Joining method 504 

implemented in the VCF2Dis tool (https://github.com/BGI-shenzhen/VCF2Dis). The 505 

resulting tree was then visualized through the iTOL (Interactive Tree of Life) (Letunic 506 

and Bork, 2021). platform to display the genetic relationships between different 507 

varieties and populations. Principal Component Analysis (PCA) was performed using 508 

PLINK software (Purcell et al., 2007), which reduced the dimensionality of the 509 

variation data to reveal the primary genetic differences among the population samples. 510 

These differences were projected into the principal component space for intuitive 511 

visualization of population structure. 512 

Population diversity analysis and specific locus calculation. 513 

SNP data analysis was performed using PLINK software. The population genome was 514 

divided using PLINK, employing a sliding window approach with a window size of 515 

100 Kb to calculate π values. The π value for each window was determined by 516 

calculating the average sequence difference between all possible base pairs within the 517 
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window. π values were generated for the entire genome across different populations, 518 

including landraces and hybrid rice parental lines from each subpopulation. Based on 519 

the integrated VCF file, the proportion of variant bases at each SNP site contributed by 520 

the landraces and hybrid rice parental lines from each subpopulation was calculated. If 521 

the contribution of any one population to the variant base at a given SNP site reached 522 

or exceeded 95%, the SNP site was classified as a population-specific site. 523 

Trait diversity assessment 524 

Use Excel to calculate the mean and standard deviation of seven quantitative traits. 525 

Based on the mean and standard deviation, rank the quantitative traits of all materials 526 

and classify them into three levels: low, medium, and high. The Shannon-Wiener 527 

diversity index (𝐻′ ) is used to evaluate the diversity of each trait. The calculation 528 

formula is as follow (Ortiz-Burgos, 2016): 529 

𝐻′ =  − ∑𝑝𝑖 ln(𝑝𝑖)

𝑠

𝑖=1

 530 

Where 𝐻′ is the Shannon-Wiener diversity index, representing the diversity level of 531 

the sample; S is the number of different categories in the sample; 𝑝𝑖  is the relative 532 

frequency of the i-th category, which is the proportion of that category in the total 533 

sample; ln(𝑝𝑖)  is the natural logarithm of the frequency of the i-th category. By 534 

calculating the Shannon-Wiener diversity index, we separately compute the diversity 535 

index for the seven traits in the 517 parent materials and 2,088 materials, and take their 536 

average values. At the same time, we calculate the average diversity index for the 517 537 

parent materials and determine the percentage of this average relative to the average 538 

diversity index of the seven traits in the 2,088 materials. 539 

Hybrid genome prediction 540 

Definition and Coding of Hybrid Varieties: In this model, the alleles of the paternal 541 

and maternal parents are defined as A1 and A2, respectively. When the hybrid variety’s 542 

allele at a given locus matches the paternal allele (A1) or the maternal allele (A2), it is 543 

assigned values of 1 and -1, respectively. Two different coding schemes are employed 544 

based on the genetic characteristics of the loci: Additive Coding (Z): In the additive 545 

model, the hybrid genotype is coded as -1, 0, and 1, corresponding to the homozygous 546 
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maternal allele, heterozygous, and homozygous paternal allele, respectively. This 547 

method is used to capture the additive effects between alleles in the hybrid. Dominant 548 

Coding (W): In the dominant model, the hybrid genotype is coded as 0 or 1, where 0 549 

represents the absence of a dominant effect and 1 represents the presence of a dominant 550 

effect. This method is used to capture the contribution of dominant alleles. Based on 551 

these coding schemes, a mixed model of additive and dominant effects is used to predict 552 

the genotype. The final prediction results are standardized and centered using the scale() 553 

function in R to ensure comparability across different traits. 554 

The definition formula for the hybrid prediction variables is: 555 

𝑍

{
 
 

 
 1 =

1

2
(1 + 1)               𝑓𝑜𝑟𝐴1𝐴1

0 =
1

2
[1 + (−1) ]              𝑓𝑜𝑟𝐴1𝐴2

−1 =
1

2
[(−1) + (−1) ]            𝑓𝑜𝑟𝐴2𝐴2

 556 

 557 

𝑊

{
 
 

 
  0 = |

1

2
(1 − 1)|                𝑓𝑜𝑟𝐴1𝐴1

1 = |
1

2
[1 − (−1) ] |              𝑓𝑜𝑟𝐴1𝐴2

0 = |
1

2
[(−1) − (−1) ] |            𝑓𝑜𝑟𝐴2𝐴2

 558 

In this study, to further improve the accuracy of hybrid genotype prediction, we 559 

extended the existing additive-dominant mixed model by incorporating parental 560 

phenotypes as an additional influencing factor. This resulted in a predictive model that 561 

integrates additive-dominant effects with parental phenotypes. Based on the best linear 562 

unbiased prediction (GBLUP) of the additive-dominant mixed variable model (UV-AD) 563 

(Clark and van der Werf, 2013). we included the parental phenotypes as covariates in 564 

the model to enhance the accuracy of hybrid genotype prediction. In this model, 565 

parental phenotypes are treated as significant variables affecting the hybrid 566 

performance. By quantifying the additive and dominant effects of the parents in the 567 

model, we further improved the predictive power of the hybrid genotypes. Additive 568 

Effect Integration: By incorporating the phenotypic data of both the father and mother, 569 

the model can more accurately capture the additive effects of parental alleles, thereby 570 
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improving the prediction of the hybrid's phenotypic performance. The additive effects 571 

are encoded through the parental alleles (A1 and A2). Dominant Effect Integration: In 572 

addition to the additive effects, the model also captures the dominant effects between 573 

the parents. Dominant effect encoding (W) is used to describe the influence of parental 574 

allele combinations on the hybrid's traits. The inclusion of dominant effects enhances 575 

the model's ability to explain the complex traits of the hybrid. Parental Phenotype 576 

Integration: In the model, parental phenotypic information is incorporated as 577 

covariates, allowing the prediction to be based not only on genotype data but also on 578 

the potential impact of the parental phenotypes on the hybrid performance. This 579 

approach enables the model to more accurately predict the hybrid performance under 580 

different environmental conditions. 581 

The definition formula for the hybrid prediction variable becomes: 582 

𝑦 =  𝑋𝛽 + 𝑍𝛾𝒶 +  𝑊𝛾𝒹 +  𝜀 583 

𝑦 =
1

2
( 𝑃𝑀 + 𝑃𝐹) 𝛽𝒶  +

1

2
| 𝑃𝑀 − 𝑃𝐹| 𝛽𝑑 +  𝑋𝛽 + 𝑍𝛾𝒶 +  𝑊𝛾𝒹 +  𝜀 584 

In the formula, PM and PF represent the parental phenotypes, βa and βd represent 585 

the additive and dominance fixed effects, respectively. X is the fixed effect structure 586 

matrix used to predict y, and m and n denote the total sample size and the total number 587 

of markers, respectively. Z and W are the additive and dominance hybrid prediction 588 

variables, which are m × n matrices. γ represents the effect values of the markers, and 589 

ε is a random error vector, where ε~N(0 , Inσ2). 590 

Two methods were employed in this study to predict the hybrid genotype. The first 591 

method (F1Genotype01) utilizes the additive-dominance mixed model (UV-AD) based on 592 

the best linear unbiased prediction (GBLUP) from the "Predhy" package of R (Xu, 593 

2017). This model integrates parental phenotype data to predict the genotypes of 770 594 

hybrid samples. The second method (F1Genotype012) follows the procedure outlined below: 595 

First, all heterozygous sites in the 946 parental VCF files are replaced with missing 596 

values to avoid interference from heterozygotes in subsequent analyses. Next, the 597 

Beagle software is used to impute the missing genotype data. Afterward, the imputed 598 

genotype data are converted to a 0-2 encoding format (0 for homozygous major alleles, 599 

1 for heterozygotes, and 2 for homozygous minor alleles) using the Plink software to 600 
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ensure compatibility with subsequent analysis tools. Finally, genotype prediction for 601 

the hybrids is performed using the synthetic.cross() function from the "ASRgenomics" 602 

package of R (https://doi.org/10.32614/CRAN.package.ASRgenomics). This method 603 

effectively reduces the bias introduced by missing data, ensuring the accuracy and 604 

reliability of genotype predictions. 605 

Hybrid phenotype prediction 606 

Genome selection (GS) utilizes high-density SNP and phenotype information from 607 

parental samples and a subset of hybrid samples to establish the association between 608 

markers and phenotypes, thereby enabling the prediction of phenotypes for additional 609 

hybrids that have not yet undergone field trials. The model expression is as follows: 610 

𝑦 = 𝑋𝛽 + ∑𝑍𝑘𝛾𝑘

𝑚

𝑘=1

+ 𝜀 611 

In this model, X represents the fixed effect structure matrix, β denotes the fixed 612 

effects, m is the total number of markers, Zk represents the genotype vector for n 613 

individuals at the k-th marker, γk denotes the effect of the k-th marker, and ε is a random 614 

error vector, distributed as ε~N(0, Inσ2). Based on this, the GBLUP prediction model 615 

combined with auxiliary traits is expressed as follows: 616 

𝑦 = 𝑃1𝛽 + 𝑋𝛽 + 𝑍𝑘𝛾𝑘 +𝑊𝑘𝛾𝑘 + 𝜀 617 

In this model, auxiliary traits are treated as fixed effects, with P1 representing the 618 

phenotype value of the auxiliary trait. X denotes the fixed effect structure matrix, β 619 

represents the fixed effects, γk indicates the effect of the k-th marker, and Zk and Wk 620 

represent the additive and dominance genotype vectors for n individuals at the k-th 621 

marker, respectively. ε is a random error vector, distributed as ε~N(0, Inσ2). 622 

Genome-Wide Association Studies 623 

In this study, the QK mixed linear model was used for analysis, and the EMMAX 624 

software package was employed (Kang et al., 2010). The expression of the model is as 625 

follows: 626 

𝑦 = 𝑋𝛼 + 𝑄𝛽 + 𝐾𝜇 + 𝑒 627 

In this study, y represents the phenotype vector, X is the genotype matrix, α is the 628 

genotype effect vector, Q is the fixed effect vector, β is the fixed effect vector, K is the 629 
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random effect matrix, μ is the random effect vector, and e is the residual vector. The P-630 

value indicates the likelihood that the genotype effect vector α for each SNP is zero; the 631 

smaller the P-value, the stronger the association between the SNP and the phenotype. 632 

The association results are visualized using Manhattan and Quantile-Quantile (QQ) 633 

plots. The Manhattan plot displays the P-values for each SNP across all chromosomes, 634 

while the QQ plot shows the overall association effect for all SNPs. In the initial phase, 635 

if the observed values are close to the expected values, it indicates that the model's 636 

association effect aligns well with the actual data. As the analysis progresses, if the 637 

observed values exceed the expected values, it indicates that the model has accurately 638 

identified significant loci. Finally, significant SNPs are annotated for their gene 639 

functions based on decay distance or conventional genetic distance. The x-axis of the 640 

Manhattan plot corresponds to the 12 chromosomes of rice, while the y-axis shows the 641 

-log10(P) value of each SNP’s effect on the phenotype. We calculated the suggestive 642 

threshold using the formula: −log10(1/effective number of independent SNPs) as 643 

previously described(Wang et al., 2016). To determine the effective number of 644 

independent SNPs, we used PLINK with a window size of 50, step size of 50, and r² ≥ 645 

0.3, resulting in 102,526 effective independent SNPs in the full population. Therefore, 646 

we set the significance threshold at: −log10(P)=5. SNP blocks within 70KB of a 647 

significant SNP are defined as candidate associated regions. Genes within these regions 648 

are selected as candidate genes for GWAS association. Based on related SNPs, allele 649 

types with favorable agronomic traits (e.g., earlier heading date (HD), shorter plant 650 

height (PH), wider flag leaf width (FLW) and grain width (GW), higher 1000-grain 651 

weight (TGW), and longer panicle length (PL) and grain length (GL) are considered 652 

advantageous. 653 

We conducted a genome-wide association study (GWAS) using the rMVP package 654 

of R (Yin et al., 2021).The phenotype data included seven traits from 770 hybrids, and 655 

the genotype data were derived from the predicted 01-type and 012-type hybrid 656 

genotypes. Genotype quality control was performed using VCFtools, retaining SNPs 657 

with a minor allele frequency (MAF) ≥ 0.05. After quality control, a total of 5,415,129 658 

SNPs and 4,311,972 SNPs were retained for subsequent analysis. The MVP.Data() 659 
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function within the rMVP package was used to convert the genotype and phenotype 660 

data into a suitable format for analysis. GWAS analysis was performed using the MVP() 661 

function in rMVP. To account for population structure and hidden relatedness, a mixed 662 

linear model (MLM) was used for association analysis. In the MLM, the kinship matrix 663 

was used to correct for genetic relatedness among individuals, and the first three 664 

principal components (PCs) were used to adjust for population structure. The 665 

Genotype01 file was used to calculate the dominant effects of the loci, while 666 

Genotype012 was used to calculate the additive effects. The x-axis of the Manhattan 667 

plot represents the 12 chromosomes of rice, and the y-axis shows the -log10(P) value 668 

for each SNP's effect on the phenotype. A threshold of -log10(P) > 5 was set, with points 669 

above this threshold considered significantly associated with the phenotype under 670 

investigation. 671 

Degree of Dominance 672 

The degree of dominance ‘d/a’ was calculated using the peak SNPs of the associated 673 

loci from F1Genotype01 and F1Genotype012 GWAS, where ‘d’ and ‘a’ referred to the dominant 674 

effect and the additive effect, respectively. The effects of heterozygous alleles were 675 

analysed for the GWAS peaks above the suggestive P value (-log10(P) > 5, from the 676 

linear mixed model) underlying the heading data, grain length, grain width, thousand 677 

grain weight, panicle length, plant height and flag leaf width. In the calculation of ‘d/a’, 678 

the lowest p-value of the SNP in each 200 Kb genomic region is recorded as an 679 

association signal for that site. Peak SNPs of the top 100 associated sites (sorted by 680 

associated signal) were used for analysis. The SNP sites in which heterozygous 681 

genotypes or homozygous genotypes of both the minor alleles had a frequency of ≤ 15 682 

in number were excluded. The average phenotypic values of heterozygous and 683 

homozygous genotypes were calculated for each significant associated SNP to evaluate 684 

the effects of heterozygous and homozygous genotypes. 685 

Accumulation of Superior Locus and Superior Haplotypes 686 

In the GWAS of F1Genotype01 and F1Genotype012, the significant correlation sites (-log10(P) > 687 

5) were selected, and the phenotypes with better performance such as short heading 688 

time, long grain length, wide grain width, large 1000-grain weight, long ear length, 689 

Jo
urn

al 
Pre-

pro
of



plant height and blade width were defined as dominant phenotypes. At the same time, 690 

the phenotypic grouping significance of heterozygous and homozygous alleles was 691 

compared for the dominant phenotypes, and the sites where the heterozygous alleles 692 

were significantly superior to the homozygous alleles were identified as the dominant 693 

heterozygous alleles. The corr.test() function of the psych package of R was used to 694 

calculate the correlation between the accumulation of predominance heterozygous 695 

alleles and phenotype (https://doi.org/10.32614/CRAN.package.psych). 696 

Significant correlation sites (-log10(P) > 5) were screened at GWAS in F1Genotype012, 697 

and each phenotypic significant site was annotated and haplotype analyzed. Excellent 698 

haplotypes were identified for candidate genes with significant phenotypic differences. 699 

Then the number of dominant haplotypes in 770 hybrids was counted, and the 700 

correlation between the cumulative number of dominant haplotypes and phenotypes 701 

was tested. 702 

Gene cloning and plant transformation 703 

The sgRNA targeting the exon of OsGRW5.1 gene was designed using CRISPR-P 2.0 704 

and cloned into the pCAMBIA1300 vector containing Cas9. The recombinant plasmid 705 

was sequenced and verified, then transformed into the Agrobacterium strain EHA105. 706 

Subsequently, the Agrobacterium-mediated transformation method was used to 707 

transform callus tissue of Nipponbare. After co-cultivation, the callus tissue was 708 

cultured on a selection medium containing 50 mg/L hygromycin to select for resistant 709 

callus. The resistant callus was then transferred to a differentiation medium to induce 710 

plant regeneration, and eventually transferred to a rooting medium for root development. 711 

Genomic DNA was extracted from T0 transgenic plants, and PCR amplification of the 712 

target OsGRW5.1 gene fragment was performed, followed by sequencing to verify the 713 

mutations. Mutation analysis was conducted using Sequencher (5.4.5) software to 714 

confirm the presence of frameshift mutations (Nishimura, 2000). T0 and T1 generations 715 

were planted in Hainan, China, during the winter of 2023 and the spring of 2024, 716 

respectively, for phenotypic evaluation. 717 

CODE AND DATA AVAILABILITY 718 

To facilitate user-friendly access to our hybrid prediction tools and datasets, we 719 

Jo
urn

al 
Pre-

pro
of



developed the Predicting Rice Germplasm Hybrid Phenotype (PRGHP) web platform, 720 

publicly available in (https://hybrice.cn/). All software or scripts used in the study are 721 

publicly available as described in methods. The raw sequence data have been deposited 722 

in the NCBI GenBank database under accession numbers PRJNA65690, PRJEB6180 723 

and China National Genomics Data Center under accession numbers PRJCA045734. 724 

All source datasets were available in the Supplemental tables.  725 
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Figure Legends 914 

Figure 1. Diversity Comparison Analysis of 2,088 accessions. 915 

(A)  Neighbor-Joining Tree of 2,088 accessions including 1,392 landraces and 696 916 

hybrid rice parent lines (HP) that including 321 sterile lines and 375 restorer lines. 917 

Yellow lines represent HP, while red, purple, blue, dark blue, and orange represent 918 

Indica1 (IND1), Indica2 (IND2), Indica3 (IND3), AUS, Tropical japonica (TRJ) and 919 

Temperate japonica (TEJ), respectively. 920 

(B)  The specific SNPs of hybrid rice parent lines compared to other subgroups (IND3, 921 

AUS, TEJ, TRJ). Green bars represent the proportion of shared SNPs (share), and 922 

yellow bars represent the proportion of unique SNPs (uniq). 923 

(C)  Genome-wide nucleotide diversity (π-value) analysis of landraces and HP, 924 

Landraces were categorized into five groups: AUS, IND1, IND2, IND3, TEJ and TRJ. 925 

IND1HP and IND2HP represent hybrid rice parent belongs to IND1 and IND2. 926 
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Figure 2. Phenotypic Prediction and Heterosis Analysis of Hybrid Combinations 928 

(A) Prediction accuracy of seven traits (FLW, flag leaf width; GL, grain length; GW, 929 

grain width; HD, heading date; PH, plant height; PL, panicle length; TGW, thousand 930 

grain weight) using five-fold cross-validation. ‘A’ and ‘AD’ represent the additive effect 931 

model and the additive-dominant effect model, respectively. 932 

(B) Effects of training sample size (ranging from 110 to 770 samples, with increments 933 

of 110 samples) on prediction accuracy using GBLUP across seven traits. 934 

(C) Predictive ability of seven traits across parental presence/absence combinations. 935 

(D) Statistical analysis of positive mid-parent heterosis across multiple traits for each 936 

hybrid combination. Blue indicates hybrid combinations exhibiting positive mid-parent 937 

heterosis in a single trait, while red denotes those displaying positive mid-parent 938 

heterosis (MPH) across all seven traits. A phylogenetic tree from 946 samples and 939 

groups (IND, AUS, TRJ, TEJ) are shown on the right. 940 

(E) Distribution of parents based on the percentage of hybrid combinations exhibiting 941 

MPH across multiple traits. The table categorizes parents according to the proportion 942 

of their hybrid combinations showing positive MPH for more than 4, 5, or 6 traits, 943 

divided into five percentage ranges: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. 944 

(F) Geographical distribution of the 52 superior parents within the 946 population 945 

across East Asia (EA), South Asia (SA), and Southeast Asia (SEA). Yellow and green 946 

indicate superior parents (adv) and non-superior parents (disadv), respectively. 947 

(G) Subgroup distribution of the 52 superior parents in the 946 population, classified as 948 

AUS, IND, TEJ and TRJ. 949 

(H) Geographical distribution of all hybrid combinations the 52 superior parents. 950 

(I) Population distribution of all hybrid combinations involving the 52 superior parents. 951 

(J) 2,088 parents and 946 hybrids were used to predict the phenotype of hybrids, and 952 

the proportion of hybrids involving germplasm resources and non-germplasm 953 

resources among the top 100 combinations of six phenotypes was determined. 954 

(K-H) The phenotypes of the five top 100 combinations with these germplasm 955 

resources were significantly different from those of the 176 hybrids formed by the 956 

sterile line restorer line (the top 100 combinations with no germplasm resources 957 
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involved). 958 
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Figure 3. Genome-wide association study (GWAS) of 946 landraces and 770 F1. 959 

(A) The circles from inside-out represent GWAS results of 946 landraces (a) 770 960 

F1Genotype01 (b) and 770 F1Genotype012 (c). Significant SNPs with -log10(P) values greater 961 

than 5 are marked (a, b, and c), with points in different colors representing different 962 

traits. 963 

(B) The numbers of candidate QTLs identified in the GWAS of parental lines, 964 

F1Genotype012, and F1Genotype01, along with their co-localization patterns. The bar chart 965 

shows the number of co-localized QTLs for each category, with specific numbers 966 

provided. The points and lines below indicate the co-localization relationships between 967 

different categories, and the right-side bar chart represents the total number of QTLs 968 

identified in each of the three categories. 969 
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Figure 4. GWAS Analysis of Seven Traits and Identification and Functional 971 

Validation of Grain Width Candidate Genes. 972 

(A) GWAS of grain width in chromosome 5, the y-axis represents the -log10(P) values. 973 

Red points represent SNPs significantly associated with grain width. 974 

(B) The local Manhattan plot for the candidate gene and the LD haplotype block map. 975 

(C) The predicted domain of protein OsGRW5.1 976 

(D) Nucleotide variation in promoter and exon region of OsGRW5.1. 977 

(E) Haplotype network of OsGRW5.1. 978 

(F) Comparison of grain width across different haplotypes of OsGRW5.1. 979 

(G) Comparison of thousand grain weight across different haplotypes of OsGRW5.1. 980 

(H-M) Functional analysis of OsGRW5.1. Genotypic identification of CRISPR/Cas9 981 

knockout mutant. The bold sequence represents the target site, and the red box indicates 982 

the PAM sequence (H). Phenotypic comparison of grain width (I), grain length (J) and 983 

thousand grain weight between the wild-type and mutant plants. The scale bar is 1 cm. 984 

Statistical significance (P-value) was calculated using a T-test for K, L, and M. 985 
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Figure 5. Hybrid Superiority Analysis of F1 GWAS and Gene Loci. 987 

(A) The significant SNP loci for seven traits (FLW, GL, GW, HD, PH, PL, and TGW) 988 

and their corresponding dominance (d/a). The x-axis represents the -log10(P) values of 989 

the SNP loci, and the y-axis shows the dominance (d/a) values. 990 

(B) The Pearson correlation between the cumulative number of superior heterozygous 991 

alleles and phenotypic values for seven traits. The x-axis represents the cumulative 992 

number of superior heterozygous alleles, and the y-axis represents the corresponding 993 

phenotypic values for each trait. 994 

(C) The distribution map of unique advantageous haplotypes on the chromosomes in 995 

946 germplasm resources, where different colors represent different traits. 996 

(D) The distribution of unique advantageous haplotypes in the 52 superior parental lines. 997 

(E) The subgroup origins of unique advantageous haplotypes in 946 germplasm 998 

resources. 999 
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Figure 6. Utilizing Germplasm Resources for Genetic Improvement of Hybrid 1001 

Rice. 1002 

The collection and introduction of globally diverse germplasm resources have enhanced 1003 

diversity by over 65%. A GWAS on the germplasm and F1 populations identified 45% 1004 

of unique advantageous haplotypes that can be used to improve hybrid parent lines 1005 

(restorer lines and sterile lines). The hybrid combination phenotypic prediction, using 1006 

the 770 hybrid F1 population as a training set, predicted a total of 446,985 hybrid 1007 

combinations. This approach facilitated the selection of superior hybrid combinations, 1008 

thereby guiding hybrid breeding and reducing the breeding workload by 95%. 1009 
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