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Dear Editor,

The Insertion Sequences of Cas9-like OrfB (IscB) family, consisting of ~490 residues
and as the ancestors of Cas9 endonucleases from 1S200/605 transposon, hold great
potential for efficient delivery via viral vectors in genome editing of both mammalian
cells and plants due to their smaller size (Altae-Tran et al., 2021; Schuler et al., 2022;
Hanetal., 2023; Han et al., 2024; Xue et al., 2024; Yan et al., 2024). The IscB associates
with its cognate 222-nt RNA obligate mobile element-guided activity RNA (oRNA)
along with the transposon-associated motif (TAM) of NWRRNA (N=A/G/C/T, W=A/T,
R=A/G) for programmable DNA double strand (DSB) cleavage (Figure 1A) (Altae-
Tran et al., 2021; Schuler et al., 2022). Unfortunately, the activity of IscB in mammalian
cells is very low, with OgeulscB only induces indels of less than 5% in HEK293T cells
(Altae-Tran et al., 2021). Recent engineered enlscB and/or enoRNA systems through
rational design achieved an average 4.3- to 30.4-fold increase in editing efficiency
compared to the wild-type IscB/@RNA, with the highest efficiency reaching up to 91.3%
in mammalian cells (Figure 1B, 1C, S1, S2) (Han et al., 2023, 2024; Xue et al., 2024,
Yan et al., 2024). Initial assessment of enlscBvl-oRNA for genome editing in rice
protoplasts revealed its relatively lower editing efficiency (Zhang et al., 2024). Whether
these different enhanced versions or combinations of enlscB-enwRNA could enable
efficient and heritable genome editing in plants remains to be explored. In this study,
we systemically investigated the editing performances and outcomes of different
combinations of enlscBs and enwRNAs in rice protoplasts. We further fused T5
exonuclease (T5E) to each of these enlscBs at C-terminus (enlscBs-T5E) in order to
improve their editing efficacies, respectively. We then tested the performances of these
enlscBs-T5E-enoRNAS in rice stable lines in order to facilitate the applications of these

miniature enlscB-enoRNA systems in diverse scenarios in plant genome editing.

To systemically test the performances of these different combinations of the
optimized enlscBs and enoRNAS at endogenous target sites in rice, we first engineered
a series of plant constructs harboring the rice codon optimized enlscBs, respectively

(Figure 1D, Table S1, S2). We used a composite 35S promotor to control the
2
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expressions of either ®RNA or the respective enoRNAS (Jiang et al., 2020). We also
fused T5E at C-termini of each of the enlscBs to generate five variants with an
architecture of enlscB-T5E (Figure 1D, Table S1, S2). Given that IscB or enlscBs
produce sticky ends, the fusion of TSE may be an effective strategy for enhancing its
editing efficiency (Han et al., 2023; Wang et al., 2025a; Wang et al., 2025b). We first
designed ten wRNAs/enoRNAs targeting eight rice endogenous genes including
OsEP3, OsEPFL9-T1, OsEPFL9-T2, OsFAD, OsHdl, OsNPT1, OsSBEIlIb-T1,
OsSBEIIb-T2, OsSLR1, and OsSWEET14, respectively (Table S3). Once these targets
are edited, traits of interest could be improved (Table S3). We then tested the
effectiveness of these enlscB-enoRNA architectures in rice protoplasts using next-
generation sequencing of PCR amplicons. Genotyping results showed that all these
enlscB-enwRNA tools exhibited significantly improved editing efficiencies, compared
to the IscB-oRNA (V0) control with which no editing events were detected at several
target sites such as OsEP3, OsHd1, OsNPT1 and OsSBEIIb-T1 at all (Figure 1E, Figure
S3). Among these enhanced versions, enlscBvl-enoRNAv1 (V1), enlscBv2-
enoRNAv2 (V2), enlscBv3-enoRNAv3 (V3), enlscBv3-enoRNAv4 (V4) and
enlscBv4-enwRNAv5 (V5) enabled editing efficiencies ranged from 1.32% to 17.33%,
0.56% to 8.96%, 0.56% to 12.55%, 0.82% to 16.79% and 0.45% to 10.67%, with
average efficiencies of 3.70%, 2.24%, 3.16%, 3.35% and 2.23%, respectively (Figure
1E, Figure S3, Table S4), representing 5.86- to 9.73-fold higher than WT IscB-oRNA,
consistence with the previous reports in mammalian cells (Han et al., 2023; Xue et al.,
2024; Yan et al., 2024). Notably, V1, V3, and V4 exhibited superior performances over
others, with the highest efficiencies reached at 17.33%, 12.55%, and 16.79% at the
OsEPFL9-T2 target site, respectively (Table S4). It was also worth to note that all the
enlscB-enoRNA showed a severe target dependent manner, such as at two targets of
OsEPFL9 (T1 and T2) and two targets of OsSBEIIb (T1 and T2) with the same gene
context (Figure S3), necessitating the screen for more efficient targets before genome

editing by enlscBs-enwRNAs.

Fusion of T5E to the enlscB variants significantly increased the overall average
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editing efficiencies at the tested endogenous target sites, respectively (Figure 1E).
Whereas IscB-T5E-oRNA (VO-T5E) enhanced it editing efficiency ranged from 0.53%
to 7.64%, with an average efficiency of 1.56%, 4.10-fold higher than IscB-oRNA (V0),
EnlscBv1-T5E-enoRNAvl  (V1-T5E),  EnlscBv2-T5E-enoRNAv2  (V2-T5E),
EnlscBv3-T5E-enoRNAv3 (V3-T5E), EnlscBv3-T5E-enoRNAv4 (V4-T5E) and
EnlscBv4-T5E-enoRNAvS5 (V5-T5E) exhibited the editing efficiencies ranging from
2.22% 10 20.04%, 1.07% to 13.84%, 1.01% to 18.65%, 1.43% to 23.65% and 0.97% to
15.68%, respectively (Figure 1E, Figure S3 and Table S4). As indicated in Figure S3,
VO-T5E significantly increased the editing efficiencies across all the ten tested targets
compared to V0. The five enlscB-T5E fusions, V1-T5E to V5-T5E, enabled more
robust editing efficiencies at 8, 5, 7, 8, and 5 target sites of the 10 tested target sites in
comparison to their non-T5E counterparts, respectively (Figure S3), albeit they did not
reach at statistically significant level at some individual target sites (Figure S3), due to
data variations in transiently transformed rice protoplasts. Notably, all the five enlscB-
T5E fusions demonstrated significantly increased editing efficacies at OsHd1 and
OsSWEET14 when compared to their non-T5E counterparts, respectively (Figure S3),
consistence with the previous reports on enhancement of genome editing performance
upon T5E fusion (Han et al., 2023; Wang et al., 2025a; Wang et al., 2025b). Furthermore,
among these improved variants, V1-T5E, V3-T5E, and V4-T5E outperformed others
and exhibited the highest efficiencies of 24.00%, 18.65%, and 23.65% at the OsEPFL9-
T2 target site, respectively (Figure S3). However, similar to their non-T5E fusion
counterparts, the efficiencies varied among different target sites, further indicating a
target-site dependency (Figure 1F). This target-site dependency again highlights the

necessity of carefully selecting target sites in practical gene editing experiments.

Furthermore, fusion of T5E to the enlscB variants expanded the editing window
and induced both insertions and deletions (indels) with various lengths including larger
deletions (Figure 1F, 1G, Figure S4). For example, at three representative target sites
including OsEPFL9-T2, OsHd1 and OsSBEIIb-T1, whereas I1scB-oRNA exhibited an

editing window of 10 to 15 nucleotides (nt), counting the end distal to the TAM as
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position 1, the editing windows of enlscB-en@RNA variants mainly occurred between
6- and 20-nt with slightly forward- and backward shifts. The fusion of T5E enlarged
the editing windows which predominantly encompassed 1- to 22-nt of the protospacer
sequences and TAM (Figure 1F). This broadening of the editing window allows for
more versatile targeted editing, providing greater flexibility for saturated mutagenesis
in directed evolution through genome editing. In addition, whereas IscB only produced
2-5 base pairs (bp) deletions, fusion of T5E to different enlscB-enoRNA variants
induced indels with various lengths and larger deletions compared to their non-T5E

counterparts (Figure 1G, Figure S4).

Following the initial assessments of different enlscB-T5E-enowRNA variants in
rice protoplasts, we then systemically evaluated their editing performances in rice stable
lines by using VO and VO-TS5E as controls. Genotypic analysis revealed that VO failed
to induce any editing events across these 10 endogenous target sites in the rice stable
lines, whereas VO-T5E only induced targeted mutagenesis with efficiencies ranging
from 0% to 3.42%. In contrast, except for similar severe target-dependency in stable
lines as observed in rice protoplasts, the enlscB-T5E-enowRNA variants significantly
improve the editing performances. For example, V1-T5E, V2-T5E, V3-T5E, V4-T5E
and V5-T5E enabled the average editing efficiencies ranging from 2.22% to 41.87%,
0% to 20.70%, 0% to 41.61%, 0% to 36.25% and 1.33% to 18.66%, with the highest
efficiency of each variant was 12.24- (41.78%/3.42%), 6.05- (20.70%/3.42%), 12.16-
(41.61%/3.42%), 10.60- (36.25%/3.42%), and 5.46-fold (18.66%/3.42%) increase
compared to VO-T5E, respectively (Figure 1H, Table S5). Consistence with our results
in rice protoplasts, among these, V1-T5E, V3-T5E, and V4-T5E outperformed others
and exhibited the highest average efficiencies of 41.87%, 41.61%, and 36.25% at the
OsHd| target site, respectively (Figure 1H, Table S5). The representative edited lines
of these ten target sites derived from VVO-T5E, V1-T5E, V2-T5E, V3-T5E, V4-T5E and
V5-T5E exhibited DNA fragment deletions of 3- to 47-bp in rice stable lines,
respectively (Figure S5). Furthermore, the edited loci were stably inherited in the

subsequent generations following Mendelian genetics, as evidenced by the consistent
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presence of the edited alleles in the progeny (Table S6). Especially, evaluations of the
agronomic traits of these edited lines demonstrated their potential applications in rice
breeding. For example, one stable mutant line of OsSWEET14, V1-T5E-6, a line
carrying a 47-bp deletion which disrupts the effector-binding element (EBE) recognized
by the PXO86's transcription-activator-like effector (TALE) in the promoter region of
OsSWEET14, exhibited markedly enhanced resistance to rice bacterial blight caused by
infection of Xanthomonas oryzae pv. oryzae (Xoo0) isolate PXO86 compared to wild-
type control (Figure 11), whereas the other two lines V3-T5E-54 and V5-T5E-15 with
deletions not reaching out to the EBE element didn’t show any resistance at all,
consistence to the previous observation of Oliva et al. (2019). Similarly, the OsEPFL9-
edited lines displayed a significant reduction in stomatal density, a trait has been
reported to be associated with enhanced drought tolerance (Yin et al., 2017) (Figure 1J).
However, we also noticed that the editing performances of these enlscB-enwRNAS,
even their optimized T5E-fused counterparts, were not as efficient as their respective
counterparts in mammalian cells (Han et al., 2023; Xue et al., 2024; Yan et al., 2024),

probably due to relatively lower temperature of 28~30°C during rice genome editing.

To evaluate the specificities of VO-T5E, V1-T5E, V2-T5E, V3-T5E, V4-T5E, and
V5-T5E in rice stable lines, respectively, we examined the off-target possibility of each
on-target site. No off-target effects were found at the putative off-target sites predicted

from web site (http://skl.scau.edu.cn/offtarget/) in the tested lines (Table S7), indicating

the high specificities of these enlscB-T5E-enoRNA variants in plant genome editing.

In summary, we here engineered several hypercompact miniature enlscB-
enoRNA systems for efficient rice genome editing by fusing TSE to the enlscBs,
respectively. Systemic evaluations of these enlscB-T5E-enoRNA variants in rice
protoplasts indicated that fusion of TSE to each of the enlscBs enabled more robust
editing, enlarged their editing windows, and induced indels and larger deletions,
respectively. Among which, enlscBvI-T5E-enwRNAv1, enlscBv3-T5E-enoRNAvV3,
and enlscBv3-T5E-enoRNAv4 outperformed other variants, achieving the editing

efficiency up to 41.87 % in stable rice lines, albeit all of which exhibiting a severe
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target-dependency manner. Further efforts will be necessary in order to improve the
robustness of these three hypercompact enlscB-TSE-enoRNA variants and achieve

more robust performance across diverse target sites for crop improvement.
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FIGURE LEGENDS

Figure 1. Schematic diagrams of different enlscB-en®RNA variants
and their editing outcomes in rice protoplasts and stable transgenic

rice lines, respectively.

(A) (i), The predicted structure of the IscB-oRNA-target DNA ternary complex. IscB
is in green, ®RNA is in yellow, target strand is in red, and non-target strand is in blue.
(ii), Domain organization of IscB. P1D, P1 interaction domain; TID, TAM-interaction
domain. RuvC domain is separated into three segments: RuvC I, RuvC II, and RuvC
III. (iii), Schematic diagrams illustrate the gene editing process mediated by IscB. TAM,
transposon-associated motif, TS, target strand, NTS, non-target strand, DSB, double

strand break, NHEJ means nonhomologous end joining, indels, insertion and deletions.

(B) The native IscB and four enlscB variants developed by rational design (Altae-

Tran et al., 2021; Han et al., 2023; Han et al., 2024; Xue et al., 2024; Yan et al., 2024).

(C) (i), Secondary structure of ®RNA according to the crystal structure of IscB-
®RNA (Han et al., 2023). (ii), The native ®RNA and different versions of optimized
©®RNAs (enoRNAs) (Altae-Tran et al., 2021; Han et al., 2023; Han et al., 2024; Xue
et al., 2024; Yan et al., 2024).

(D) Schematic diagrams of IscB-oRNA (V0), IscB-T5SE-oRNA (VO0-T5E), enlscBv1-
enoRNAv1 (V1), enlscBvl-T5E-enwoRNAv1 (VI-T5E), enlscBv2-enoRNAv2 (V2),
enlscBv2-TSE-enoRNAv2 (V2-T5SE), enlscBv3-enoRNAv3 (V3), enlscBv3-T5E-
enoRNAv3 (V3-TSE), enlscBv3-enoRNAv4 (V4), enlscBv3-T5E-enoRNAv4 (V4-
T5E), enlscBv4-enoRNAvVS (V5), and enlscBv4-TSE-enoRNAvS (V5-TSE). The IscB
and its enlscB variants are driven by a maize Ubiquitin promotor (Ubi). The enoRNA
variants are expressed under the control of the 35S-CmYLCV-U6 composite promoter
and terminated with “TTTTTTT’. The Apt is used as a selection marker gene. TSE, T5

Exonuclease.
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(E) Frequencies of targeted genome editing by V0, VO-T5E, V1, V1-T5E, V2, V2-
T5E, V3, V3-T5E, V4, V4-T5E, V5, and V5-T5E at ten target sites in protoplasts.
Each data point corresponds to an independent event. Different letters indicate

significant differences, determined using a one-way ANOVA (P <0.05; Duncan test).

(F) The editing windows of different versions of enlscB-enoRNAs at the OsEPFL9-

T2, OsHd1 and OsSBEIIb-T1 endogenous target sites in rice protoplasts.

(G) The profiles of deletion size induced by various versions of enlscB-enwRNAs at

the OsEPFLY9-T2, OsHd1 and OsSBEIIb-T1 endogenous target sites in rice protoplasts.

(H) The performances of different enlscB-T5E-enoRNAs in rice independent
transgenic lines, respectively. The editing efficiencies are calculated based on three
independent biological replicates (each replicate was performed with 3 repeats).
Different letters indicate significant differences, determined by using a one-way

ANOVA (P <0.05; Duncan test).

(I) (i), The mutation patterns in OsSWEET14 promoter were derived from V1-T5E, V3-
T5E and V5-TSE in the Tz lines, respectively. The PAM sequences are highlighted in
purple. The target sequence is underlined. The effector-binding element (EBE)
recognized by transcription-activator-like effector (TALE) of the Xoo isolate PXO86 in
the OsSWEET14 promoter is enclosed in the dashed box. The dashed lines indicate
nucleotide deletions. (ii), The morphology of wild-type ZH11 and OsSWEET14-edited
lines before and 14 d after inoculation with PXO86. Scale bar, 20 cm. (iii), Phenotypes
of leaves from 8-week-old ZH11 wild-type and OsSWEET14 promoter-edited mutant
plants inoculated with the PXO86. Scale bar, 2 cm. (iv), Lesion lengths on PXO86-
inoculated leaves were measured 14 d post-infection. Data are means = SD of three
independent plants (three to six leaves per plant). ZH11, wild-type Zhonghuall; V1-
T5E-6, V3-T5E-54, and V5-T5E-15: T2 lines harboring 47-, 9-, and 4-bp promoter
deletions, respectively. Only 47-bp deletion disrupts the EBE recognized by the
PXO0O86's TALE in the OsSWEETI4 promoter. Different letters indicate significant

differences, determined by using a one-way ANOVA (P <0.05; Duncan test).
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(J) (i), Scanning electron micrographs of stomatal distribution in wild-type (ZH11) and
OsEPFLY9 mutants. Representative stomata are indicated by white arrows. A close-up
view of stomata are shown in the upper-right corner of the images. Scale bar, 50 um.
(ii), Stomatal density was quantified in wild-type ZH11 and the T2 mutant line of V1-
T5E-17, which harbors a 7-bp in-frame deletion within the OsEPFL9 coding region,
respectively. VI1-T5E-17 exhibited significantly lower stomatal density than the wild-
type control. Different letters indicate significant differences, determined by using

Student’s two-tailed unpaired t-test (P < 0.05).
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