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Maize seedling count and leaf age are critical indicators of early growth status, essential for effective field man-
agement and breeding variety selection. Traditional field monitoring methods are time-consuming, labor-
intensive, and prone to subjective errors. Recently, deep learning-based object detection models have gained 
attention in crop seedling counting. However, many of these models exhibit high computational complexity 
and implementation costs, making field deployment challenging. Moreover, maize leaf age monitoring in field 
environments is barely investigated. Therefore, this study proposes two lightweight models, YOLOv8n-Light-
Pruned (YOLOv8n-LP) and YOLOv11n-Light-Pruned (YOLOv11n-LP), for monitoring maize seedling count and 
leaf age in field RGB images. Our proposed models are improved from YOLOv8n and YOLOv11n by incorporating 
the DAttention mechanism, an improved BiFPN, an EfficientHead, and layer-adaptive magnitude-based pruning. 
The improvement in model complexity and model efficiency was significant, with the number of parameters re-
duced by over 73 % and model efficiency upgraded by up to 42.9 % depending on the device computation power. 
High accuracy was achieved in seedling counting (YOLOv8n-LP/ YOLOv11n-LP: AP = 0.968/0.969, R2 = 0.91/ 
0.94, rRMSE = 6.73 %/5.59 %), with significantly reduced model size (YOLOv8n-LP/ YOLOv11n-LP: parameters = 
0.8 M/0.7 M, trained model size = 1.8 MB/1.7 MB). The robustness was validated across datasets with varying 
leaf ages (rRMSE = 4.07 % – 7.27 %), resolutions (rRMSE = 3.06 % – 6.28 %), seedling compositions (rRMSE = 
1.09 % – 9.29 %), and planting densities (rRMSE = 3.38 % – 10.82 %). Finally, by integrating plant counting and 
leaf age estimation, the proposed models demonstrated high accuracy in leaf age detection using near-ground 
images (YOLOv8n-LP/ YOLOv11n-LP: rRMSE = 5.73 %/7.54 %) and UAV images (rRMSE = 9.24 %/14.44 %). The 
results demonstrate that the proposed models excel in detection accuracy, deployment efficiency, and adaptabil-
ity to complex field environments, providing robust support for practical applications in precision agriculture. 
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
1. Introduction 

Maize is among the most planted crops globally, the consumption of 
which has significantly increased in the past decade despite the de-
creasing cultivation area (Rehman et al., 2019). Enhancing maize yield 
is crucial for meeting the increasing needs of the ever-growing popula-
tion (Ray et al., 2012). Seedling emergence and leaf development are 
key early growth indicators directly influencing subsequent yield 
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performance (Doebley et al., 1997; Liu et al., 2018; Xia et al., 2022). 
The emergence rate of maize, defined as the percentage of seeds that 
successfully germinate and grow into seedlings, is a critical factor in 
field management and breeding evaluation (Gao et al., 2023b; Liu 
et al., 2022). Leaf age, defined as the number of fully expanded leaves 
(Boyes et al., 2001), is also closely monitored by agronomists and 
farmers. Timely assessment of these two parameters can not only 
guide field management decisions such as seedling replenishment and 
irrigation (Bai et al., 2023), but also facilitate breeding material selection 
(Gao et al., 2023b). 

In real practice, manual inspection in the field is still the primary way 
to monitor seedling emergence and development. However, manual 
monitoring through visual inspection is labor-intensive, time-
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consuming, and subject to human error (Buters et al., 2019). Real-time 
or near real-time data feeds providing information on the seedling 
count and leaf age are necessary for smart farming and breeding 
(Forcella, 1998; Tan et al., 2022). Lately, we have been consulted by 
many researchers and decision-makers about portable devices with 
real-time visualization of seedling monitoring results. However, a big 
obstacle for developing such devices is the high requirements for bat-
tery and computing capacity, as well as the heavy weight that comes 
with them. Therefore, there is an urgent need for efficient and auto-
mated methods to monitor maize count and leaf age (Bai et al., 2023). 
We hope to develop a model that can be deployed on-board unmanned 
aerial vehicles (UAVs) or embedded devices with limited memory and 
computational resources without adding on too much weight. 

Leveraging high-spatial-resolution RGB remote sensing as the data 
source, machine learning and deep learning methods are the main 
pathways for plant counting and leaf age estimation. For plant counting, 
traditional machine learning methods such as template matching, com-
puter vision-based peak detection algorithm, and corner detection 
model have been applied for seedling counting from high-resolution 
UAV imagery (Bai et al., 2022; Koh et al., 2019; Liu et al., 2022; Yuan 
et al., 2024). Additionally, regression models such as multiple linear re-
gression, support vector regression, regression trees, and gaussian pro-
cess regression have been adopted to derive seedling counts from 
spectral and morphological vegetation features (Banerjee et al., 2021; 
Liu et al., 2022). Image-based leaf age estimation studies, however, are 
rare. Bai et al. (2023) input pre-defined features such as texture, shape 
features, and spectral indices from UAV RGB images in regression 
models to estimate maize leaf age. The Gradient Boosting Decision 
Tree (GBDT) model achieved the best performance with an R2 of 0.88 
and an RMSE of 0.33. A common problem in these traditional machine 
learning methods is that they heavily depend on image quality and 
manual feature extraction, frequently overlooking critical features and 
limiting their ability to generalize under complex environmental condi-
tions. In contrast, deep learning, especially convolutional neural net-
works (CNNs), automatically learns multi-level features directly from 
raw images, capturing complex details like leaf shape, texture, and 
structure (Liu et al., 2022). This enables deep learning models to handle 
diverse conditions such as varying environments, lighting, and view an-
gles, making them more suitable for real-world applications like maize 
seedling and leaf analysis. 

Notable and influential deep learning frameworks in object detec-
tion include the Faster R-CNN (Ren et al., 2016), Single Shot MultiBox 
Detector (SSD) (Liu et al., 2016), and You Only Look Once (YOLO) 
models. The Faster R-CNN model is a two-stage model that first pro-
poses potential regions and then identifies target objects from these re-
gions. When applied in maize seedling detection, over 97.71 % precision 
has been reported (Quan et al., 2019). However, it still faces challenges 
such as large model sizes, limited real-time performance, and restricted 
generalization capabilities. The SSD combines feature fusion, optimized 
framework design, and improved loss functions to become a significant 
algorithm in object detection due to its speed and ease of use. However, 
it faces challenges in small object detection (Zhang et al., 2023). 
Recently, the YOLO family of models has made significant break-
throughs in object detection accuracy and efficiency (Jiang et al., 
2022). Notably, YOLOv5, which integrates an attention mechanism, 
has been utilized for wheat ear counting. This model effectively 
alleviated environmental noise in the field, achieving a mean average 
precision (mAP) of 94.3 % (Li and Wu, 2022). In the past five years, up-
dated versions YOLOv7, YOLOv8, and even YOLOv11 have been pub-
lished, each time with enhanced accuracy and efficiency on object 
detection and segmentation tasks (Jegham et al., 2024; Yu et al., 2025). 

The latest research endeavors in deep learning model development 
have focused on transforming large-parameter models into lightweight 
alternatives to fulfill real-time applications (Wang et al., 2022). These 
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studies typically reduce model parameters by leveraging lightweight 
feature extraction layers (Bao et al., 2021), channel attention mecha-
nisms (Zhou et al., 2024), or depth-wise separable convolutions (DSC) 
(Gao et al., 2022a). However, the optimizations primarily target heavy-
weight models, reducing the model size from 42.7 to 224.0 MB to 
19.82–71.69 MB (Gao et al., 2022a; Zhu et al., 2024). As a result, these 
lightweight models still demand considerable computational resources. 
Recently, Jia et al. (2024) assessed the performance of multiple more 
lightweight models on maize seedling counting, including YOLOv8n 
(parameter size 3.20 M), YOLOv5 (parameter size 1.90 M), YOLOv3‑tiny 
(parameter size 8.44 M), and more. They found that YOLOv8n achieved 
the highest accuracy with a mean average precision (mAP) of 0.976, 
demonstrating the potential of much smaller models in counting 
maize seedlings. However, the YOLOv8n model still requires 8.1 G 
floating-point operations (GFLOPs), i.e., 8.1 109 floating-point opera-
tions. The wide desire of instant inference and visualization devices by 
breeding scientists and decision makers require lightweight and robust 
models. Hence, to facilitate the deployment of cost-effective mobile de-
vices for accurate and real-time crop monitoring, efforts in developing 
lightweight seedling counting models with fewer than a million param-
eters are critical. 

Small as the model we want to be, robustness to diverse conditions 
is still essential for deployment in practical field environments. Real-
field applications can be challenging due to complexities such as varying 
illumination conditions, varied planting density, different growth 
status, messy backgrounds (soil wetness or weeds), limited selections 
of cameras, etc. Most studies have shown strong performance in ad-
dressing one to two specific factors, including varying planting densities 
(Liu et al., 2023), growth stages (Quan et al., 2019), and flight altitudes 
(Gao et al., 2023a). However, field conditions are often more complex, 
posing significant challenges to model transferability and adaptability. 
The investigation of model robustness over multiple factors in more 
complicated field settings is highlighted (Jia et al., 2024). 

Compared to the prosperity in seedling counting studies, research 
into leaf age detection is rare. Most were tested exclusively on single 
maize plants cultivated in controlled indoor environments (Ning et al., 
2024; Xie et al., 2023). Despite the high precision, they lack the com-
plexity of field environments and thus fail to capture the actual growth 
variations. We found two publications working on leaf counting in the 
field. Both adopted a two-stage deep learning approach, first 
segmenting the exact boundary of individual maize plants with a seg-
mentation model and then identifying the plant leaves with an object 
detection model (Xu et al., 2023; Xu et al., 2022). While the leaf detec-
tion results are accurate (precision up to 93 %), segmentation models re-
quire annotations of the exact shape of targets, making the labeling 
process tedious. Additionally, both studies used the YOLOv5x model in 
the leaf detection step. YOLOv5x is the largest model (about 86.7 M pa-
rameters) in the YOLOv5 series, which brings us back to the problem of 
substantial computational costs and unfeasibility in real-time applica-
tions. Therefore, there remains a critical need for models that simulta-
neously monitor both maize seedling number and leaf age with high 
accuracy and low computational cost in field scenarios. 

To address the abovementioned challenges, this study proposes a 
lightweight and robust deep-learning model to monitor maize seedling 
number and leaf age in field environments. The specific tasks are as fol-
lows: (1) proposing an improved lightweight YOLO model and validat-
ing its performance in maize seedling monitoring, (2) evaluating the 
robustness of the proposed model for maize seedling counting, and 
(3) monitoring the leaf age of maize at both the individual plant and 
plot levels. Given its lightweight and robustness, we anticipate that 
the proposed model will provide a significant tool for the instant mon-
itoring of maize seedling development. Moreover, it could be highly ap-
plicable to similar crops such as sorghum and possibly transferable to 
other row-planting crops such as cotton and sugar beet. 

https://19.82�71.69
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Fig. 1. Flowchart of the experimental design. 
2. Materials and methods 

The experimental design of this study is shown in Fig. 1. The follow-
ing five subsections detail the study site and design (Section 2.1), the 
data preparation process (Section 2.2), principals of the proposed 
models (Section 2.3), four experiments to find and validate the optimal 
models for seedling counting and leaf age monitoring (Sections 2.4), 
and the accuracy evaluation criteria (Section 2.5). 

2.1. Study site and design 

The experimental site was at the Xinxiang Base of the Chinese 
Academy of Agricultural Sciences (113°47′E, 35°10′N) in Henan 
Province, China. The region is located in Huanghuaihai Plain with annual 
precipitation of 500–900 mm, 45–65 % of which is summer rainfall, pro-
viding sufficient moisture for the growth of summer maize (Liu et al., 
2010). This plain is the largest concentration of maize production in 
China, accounting for more than 30 % of the Chinese country maize 
area (Bai et al., 2023). 
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Three rounds of experiments were conducted, planting maize seeds 
on June 8, 2022 (Fig. 2a), June 19, 2023 (Fig. 2b), June 26, 2023 (Fig. 2b), 
and August 24, 2023 (Fig. 2b). In each round, three treatment factors 
were considered, i.e., maize variety (Table 1), seedling composition, 
and planting density. In 2022, the first set of experiments had four 
maize varieties (ND108, ZD958, JNK728, and DH605) planted with 
four levels of seedling composition (0 %, 20 %, 40 %, and 60 % smaller 
seedlings). To create the different seedling composition level scenarios, 
seedlings in the plot were removed at the V2 stage (two leaves fully de-
veloped) and replaced with newly planted seeds. Each plot covers a 
3.6 m × 5.4 m area, with 6 rows at 0.6 m row spacing and 0.225 m 
plant spacing. The second experiment set had four maize varieties 
(DH 605 and KH699, YD9953, and ZYY432) planted at four levels of 
plant spacing (60.0 cm, 37.0 cm, 22.2 cm, and 15.9 cm plant spacing). 
Each plot covered a 3.6 m × 7.2 m area. Each set was planted in two 
plots to avoid random errors due to local soil conditions. Both plots 
were sown on June 8, 2022 (Fig. 2b). In 2023, the same first experiments 
were carried out. The four varieties for different seedling composition 
levels were DH605, DK688, ZD958, and FDCY10. Each set was again 
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Fig. 2. Study site: (a) Experiment plots in 2022, (b) Plots in 2023. 
planted in two plots to avoid random errors. One plot was sown on June 
19, 2023, and the other one week later on June 26, 2023 (Fig. 2b), to 
avoid random errors due to the sowing date. All plots covered a 
3.0 m × 4.0 m area. The 24 plots with 20 %, 40 %, and 60 % smaller seed-
lings were entirely removed and planted again on August 24, 2023, to 
increase the sample size. 

2.2. Data preparation 

2.2.1. Near-ground image acquisition and processing 
Near-ground (NG) images were collected in August 2023, using a 

Daheng MER2–302-56U3M/C digital camera (Daheng Imaging, Beijing, 
China) with a 2448 × 2048 pixels resolution fixed on a 4.1 m tall pole 
(Fig. 3). The image spatial resolution was 1.18 mm. As the camera 
could only capture four rows of seedlings at a time, two images were 
taken at each plot to cover the entire plot. These two locations were 
marked and reused for each time of data collection. We took photos of 
the seedling composition plots 16 times, starting from the V2 stage 
(two fully unfolded leaves) to the V5 stage (five fully unfolded leaves) 
(Fig. 3d). In total, 1918 near-ground images were acquired. These im-
ages formed the NG dataset. 

2.2.2. UAV image acquisition and processing 
High-spatial-resolution RGB images were acquired using a Sony α 7 

II digital camera (Sony Corporation, Tokyo, Japan) loaded on a DJI M600 
Pro UAV (DJI, Shenzhen, China). Two different camera lenses were used, 
one with a focal length of 40 mm and the other with 50 mm. Flights 
Table 1 
Experimental varieties design. 

ID Maize variety Maize variety Sowing date 
abbreviation 

Jun 8, Jun 19, Jun 26, Aug 24, 
2022 2023 2023 2023 

1 Nongda 108 ND 108 √ – – – 
2 Zhengdan958 ZD 958 √ √ √ √ 
3 Jingnongke728 JNK 728 √ – – – 
4 Denghai605 DH 605 √ √ √ √ 
5 Kehe699 KH 699 √ – – – 
6 Yudan9953 YD 9953 √ – – – 
7 Zhengyuanyu432 ZYY 432 √ – – – 
8 Dika688 DK 688 – √ √ √ 
9 Fondecunyu10 FDCY 10 – √ √ √ 
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were taken at different flight altitudes and speeds to acquire images of 
different spatial resolutions (Table 2). By making these variations, we 
aimed to train the models to work well on UAV images with little 
restrictions on the data collection process. The latitude and longitude 
coordinates of a total of 13 ground control points (GCPs) were measured 
using a real-time kinematic (RTK) positioning system, GNSS RTK-G970II 
(UniStrong, Beijing, China). The data-acquisition devices are shown in 
Fig. 4a. 

The pre-processing of the UAV data includes stitching the multiple 
photos into an orthomosaic, georeferencing orthomosaics captured on 
different dates, clipping the orthomosaics into plot-level images, and la-
beling all the seedlings (Fig. 4). The GCP coordinates were input into the 
Agisoft Metashape software (Agisoft LLC, Russia) to assist in mosaicking 
the UAV digital images (Fig. 4b). The result orthomosaic is a geometri-
cally corrected, seamless composite image that provides full coverage 
of the entire study area, serving as a reliable foundation for subsequent 
target identification and analytical procedures. The spatial resolutions of 
the generated orthomosaic images were 1.87 mm, 2.21 mm, 2.95 mm, 
3.40 mm, and 4.47 mm, respectively (Table 2). ArcGIS 10.8 (Environ-
mental Systems Research Institute, Inc., Redlands, USA) was used to 
clip the UAV orthomosaic to individual-plot images (Fig. 4c). The per-
plot image size varied depending on the image resolution, as detailed 
in Table 2. The labeling procedure and division of datasets for UAV im-
ages mirrored that of the near-ground images. 

In this study, 744 UAV maize plot images were obtained, including 
288 images from 2022 and 456 images from 2023. Due to the high de-
mand for large sample sizes in deep learning models, we augmented 
the data to enhance the training effectiveness and generalizability of 
the model. Three data augmentation methods were applied: Contrast 
Limited Adaptive Histogram Equalization (CLAHE augment), histogram 
equalization (hiscolor augment), and adjustments to colour settings 
(brightness, contrast, and saturation) (i.e., illumination augment) 
(Shorten and Khoshgoftaar, 2019) (Fig. 5). These methods increased 
the diversity and volume of the training set, enabling the model to 
learn more robust features and enhancing its performance in various 
real-world scenarios. 

2.2.3. Dataset configuration 

2.2.3.1. Seedling count. The collected NG and UAV images were organized 
into multiple datasets to facilitate five different experiments, for the as-
sessment of model robustness. Details of these datasets are summarized 
in Table 3. 
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Fig. 3. Near-ground image acquisition. (a) Overview. (b) The camera. (c) An image acquired after processing. (d) Examples of maize seedlings at different growth stages. 

Table 2 
Flight parameters. 

Year Flight 
altitude (m) 

Flight speed 
(m/s) 

Side 
overlap (%) 

Front 
overlap (%) 

Camera focal 
length (mm) 

Plot image size 
(pixels) 

Spatial 
resolution (mm) 

Repetitions 

2022 

2023 

30 
40 
20 

30 

2.0 
2.4 
1.8 
1.8 
2.8 
2.8 

75 
75 
75 
75 
80 
80 

80 
80 
80 
80 
80 
80 

40 
40 
40 
50 
40 
50 

1184 × 1325 
916 × 1025 
3040 × 3460 
3800 × 4200 
2024 × 2300 
2400 × 2667 

3.40 
4.47 
2.21 
1.87 
3.40 
2.95 

7 
2 
1 
12 
2 
11 
Images collected using the NG and UAV approaches were organized 
into the NG and UAV datasets. The LabelImg tool (Tzutalin, 2015) was  
used for manual annotation, drawing bounding boxes around each 
maize seedling. The NG dataset contained 1918 images (74,887 seed-
lings were labeled), with 90 % (1725 images) allocated to the NG-train 
dataset and the remaining 10 % (193 images) to the NG-test dataset. 
The NG-train dataset was used to train the seedling counting model 
for the NG platform, with 8/9 of the data allocated for training and 1/9 
for validation. The model performance was evaluated using the NG-
test dataset. The UAV dataset contained 744 images (90,176 seedlings 
were labeled), with 90 % forming the UAV-train dataset (2674 images 
after data augmentation) and the remaining 77 images designated for 
the UAV-test dataset. Similarly, 8/9 of the UAV-train dataset was used 
Fig. 4. UAV data preprocessing. (a) Data acquisition devices. (b) Image stitching. (c) Plot clipp
density. 
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for training and 1/9 for validation, while the UAV-test dataset was 
used to assess model accuracy. 

2.2.3.2. Leaf age monitoring. We further estimated leaf age at both the in-
dividual plant level and plot level by training the proposed models to 
identify leaf tips, using both the NG and UAV datasets. Because maize 
leaves tend to overlap as the plants grow, we worked on plots with av-
erage leaf ages ranging from V2 and V3, where individual-plant-level 
leaf ages ranged from V1 to V6. Based on the seedling counting result, 
we generated cropped images of individual maize plants. The leaf tips 
in these individual maize images were labeled using labeling to create 
a new dataset related to leaf age. The NG platform dataset comprised 
17,712 plant images, with the training set (NG-Leaf-train) containing 
ing. (d) Plot-level UAV images with different resolution, seedling composition and plant 
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Fig. 5. Examples of augmented images. (a) Raw image. (b) CLAHE augment. (c) hiscolor augment. (d) illumination augment. 
15,940 images and the testing set (NG-Leaf-test) containing 1772 im-
ages. The UAV platform dataset contained 14,244 plant images, with 
the training set (UAV-Leaf-train) comprising 12,819 images (25,639 
images after data augmentation) and the testing set (UAV-Leaf-test) 
comprising 1425 images (Table 4). 

2.3. Proposed models 

The YOLO models are a series of deep learning models widely 
adopted for object detection (Jocher et al., 2023). In the YOLO family, 
YOLOv8 and YOLOv11 are the latest Ultralytics official versions to the 
date of submission, with “x” representing the most accurate but extra-
large models and “n” (nano) representing the most efficient models. 
Therefore, aiming for real-time applications in portable devices, we pro-
posed two novel lightweight models based on their nano versions 
(YOLOv8n and YOLOv11n), by redesigning the major components and 
adding a pruning step. The redesign targets the principal challenges of 
early-stage crop monitoring—tiny objects, heavy occlusion, complex il-
lumination, and limited computational resources—through systematic 
modifications of the Backbone, Neck, and Head. The proposed models 
are YOLOv8n-Light-Pruned (YOLOv8n-LP) and YOLOv11n-Light-
Pruned (YOLOv11n-LP), respectively. 
Table 3 
Datasets in the seedling count experiment. 

Factor Category Data source No. Dataset 
images 

training testing 

Platform 
NG 
UAV 
V2 

all NG data 
all UAV data 

1918 
744 
534 

NG-train 
UAV-train 

NG-test 
UAV-test 

NG-V2-test 
Growth 
stage 

V3 
V4 

NG data 
610 
397 

NG-train 
NG-V3-test 
NG-V4-test 

V5 
1.87 

377 
204 

NG-V5-test 
UAV-1.87-test 

Resolution 
(mm) 

2.21 
2.95 
3.40 

UAV data 
(see Table 2) 

24 
204 
248 

UAV-train 
UAV-2.21-test 
UAV-2.95-test 
UAV-3.40-test 

4.47 64 UAV-4.47-test 
Seedling 0 72 UAV-0-test 
composition 20 224 UAV-20-test 
(ratio of 
smaller 

40 
UAV data 

224 
UAV-train 

UAV-40-test 

seedlings) 60 224 UAV-60-test 
(%) 

60.0 UAV data 24 – UAV-60.0 
37.0 collected in 2022 24 – UAV-37.0 

Plant spacing 22.2 using the 40 mm 24 – UAV-22.2 
(cm) camera at 30 m 

15.9 flight height 24 – UAV-15.9 
(see Table 2) 
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2.3.1. YOLOv8n-LP 
YOLOv8n-LP (Fig. 6) is an optimized variant derived from YOLOv8n, 

with modifications in the Backbone, Neck, and Head components, 
aiming to reduce the parameter size without compromising accuracy. 
These module optimizations and replacements make YOLOv8n-LP suit-
able for deployment in resource-constrained environments, such as mo-
bile devices or real-time monitoring systems. 

2.3.1.1. Backbone. We replaced the last C2f module with C2f_DAttention, 
which integrates deformable attention (DAttention) (Xia et al., 2022) 
mechanisms to improve the quality of feature representation. With 
DAttention, the weights of different channels and spatial locations 
were dynamically adjusted during feature extraction. This module am-
plifies fine textures (e.g., leaf tips and venation) while suppressing soil 
and weed noise with negligible parameter overhead. 

2.3.1.2. Neck. The original Path Aggregation Feature Pyramid Network 
(PAFPN) (Liu et al., 2018) used in YOLOv8n struggles with effective 
cross-scale feature fusion, especially when dealing with occluded or 
small-scale objects. In our optimization, we replaced PAFPN with an en-
hanced Bidirectional Feature Pyramid Network (BiFPN). The BiFPN al-
lows for both top-down and bottom-up feature propagation, thus 
improving multi-scale feature fusion (Tan et al., 2020). Additionally, 
we incorporated a lightweight 3 × 3 convolution layer before each fea-
ture fusion in BiFPN to compress feature channels, reducing computa-
tional costs while enhancing the representation of local context. 
Hereafter we refer to this enhanced BiFPN as Conv-BiFPN. 
Table 4 
Datasets for leaf age monitoring. 

Platform Leaf 
age 

Individual-plant-level dataset Plot-level 
dataset 

total training testing testing 

NG V1 
V2 
V3 

1054 
8497 
6087 

954 
7616 
5498 

100 
881 
589 

0 
267 
267 

V4 1863 1680 183 0 
V5 195 178 17 0 
V6 16 14 2 0 

Total 17,712 NG-leaf-train 
(15940) 

NG-leaf-test 
(1772) 

NG-leaf-plot 
(534) 

UAV V1 1815 1628 187 4 
V2 8280 7468 812 99 
V3 2743 2471 272 22 
V4 1178 1051 127 6 
V5 220 195 25 0 
V6 8 6 2 0 

Total 14,244 UAV-leaf-train UAV-leaf-test UAV-leaf-plot 
(12819) (1425) (131) 
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Fig. 6. Network architecture of YOLOv8n-LP: using C2f_DAttention in the Backbone, Conv-BiFPN in the Neck, and EfficientHead in the Head. Note: the red dotted rectangles mark modified 
modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
2.3.1.3. Head. In the original YOLOv8n, the Decoupled Head (Varghese 
and Sambath, 2024) uses separate convolutional operations for classifi-
cation, bounding box regression, and confidence score prediction. This 
increases computational and memory overhead. To reduce these costs, 
we replaced the Decoupled Head with an EfficientHead. This 
EfficientHead replaced the original 1 × 1 projection in YOLOv8n with 
two 3 × 3 group convolutions (Xie et al., 2017), with every 16 channels 
processed as one group. This grouping strategy reduces the memory 
and computational load while maintaining decoupled outputs for each 
task. 

2.3.1.4. Pruning. The literature has indicated that removing unimportant 
weights from a network would improve the model generalization and 
learning speed (LeCun et al., 1990; Menghani, 2023). Therefore, we fur-
ther applied layer-adaptive magnitude-based pruning (LAMP) (Lee 
et al., 2020) on the  refined model. The implementation of LAMP begins 
by quantifying the importance of each layer in the neural network 
through the analysis of metrics such as weight magnitude, activation 
patterns, and gradient flows during training. Based on these importance 
scores, LAMP dynamically adjusts the pruning rate for each layer, ag-
gressively pruning less important layers while retaining more parame-
ters in crucial ones. Redundant parameters were removed by zeroing 
out or eliminating weights that contribute minimally to the model per-
formance. Finally, the model undergoes retraining and fine-tuning to 
optimize the remaining weights, ensuring that high levels of maize 
leaf detection and counting accuracy are maintained. 

2.3.2. YOLOv11n-LP 
YOLOv11n represents an advanced model that benefits from addi-

tional refinements over YOLOv8n, particularly in multi-scale feature 
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fusion, model efficiency, and real-time performance (Khanam 
and Hussain, 2024). We applied similar structural modifications as in-
troduced in Section 2.3.1 to YOLOv11n to propose the YOLOv11n-LP 
model. 

The network structure of YOLOv11n-LP is illustrated in Fig. 7. 
Backbone: We replaced the original C3k2 module with C3k2_DAttention, 
which introduces deformable attention (Xia et al., 2022) to improve  fea-
ture representation, particularly for small and occluded targets. Neck: 
The original PAFPN was replaced by Conv-BiFPN to efficiently fuse 
multi-scale features while reducing computational costs. Head: The origi-
nal head was the Decoupled Head with DSC. The DSC-Decouped Head was 
replaced by the abovementioned EfficientHead to reduce the model 
parameter size and computational complexity, allowing for real-time in-
ference on edge devices. Pruning: After the modifications with these 
three core components, we integrated the LAMP module, which combines 
lightweight attention mechanisms with multi-scale feature fusion. 

2.4. Experiments 

2.4.1. Ablation experiment of the proposed model 
We conducted ablation experiments to evaluate the contributions of 

individual modifications within the proposed model. Specifically for 
YOLOv8n-LP, each essential module (i.e., C2f_DAttention in the Back-
bone, Conv-BiFPN in the Neck, EfficientHead in the Head, and LAMP) 
was individually substituted with original configurations (i.e., C2f, 
PAFPN, Decoupled Head, and no LAMP) to observe changes in the detec-
tion accuracy and computational efficiency. For YOLOv11n-LP, the com-
parison was between each modification (i.e., C3k2_DAttention in the 
Backbone, Conv-BiFPN in the Neck, EfficientHead in the Head, and 
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Fig. 7. Network architecture of YOLOv11n-LP: using C3K2_DAttention in the Backbone, Conv-BiFPN in the Neck, and EfficientHead in the Head. Note: the red dotted rectangles mark mod-
ified modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
LAMP) with their original configurations (i.e., C3k2, PAFPN, DSC-
Decoupled Head, and no LAMP). 

The ablation experiments were conducted consistently using the 
NG-train dataset for training and the NG-test for evaluation. All models 
used the same training parameters: a batch size of 16, a learning rate of 
0.0001, and 100 epochs. 

2.4.2. Comparison of the proposed model with existing ones 
Two proposed lightweight models, YOLOv8n-LP and YOLOv11n-LP, 

were compared with seven state-of-the-art models to validate their 
performance on real-time maize seedling counting. The seven state-
of-the-art models are Faster Region-Convolutional Neural Network 
(Faster R-CNN) (Ren et al., 2016), Single Shot MultiBox Detector (SSD) 
(Liu et al., 2016), YOLOv7x (Wang et al., 2023), YOLOv8n (Varghese 
and Sambath, 2024), YOLOv9n (Wang et al., 2022), YOLOv10n (Wang 
et al., 2024a), YOLOv11n (Khanam and Hussain, 2024). All models 
were trained on an NVIDIA GeForce RTX 4090 graphical processing 
unit (GPU), using pre-trained models from the Common Objects in Con-
text (COCO) dataset. All models were trained using the NG-train dataset 
and tested using the NG-test dataset (Table 3). 

2.4.3. Robustness of the proposed model for maize seedling counting 
This experiment was designed to evaluate the robustness and gener-

alizability of the proposed YOLOv8n-LP and YOLOv11n-LP models for 
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maize seedling counting in a series of meticulously structured scenarios. 
The specific data distribution is shown in Table 3. The experiment fac-
tors included: (1) Platform. Both the NG and UAV datasets were consid-
ered. While NG data collection is more suitable for real-time 
examination of each plot, the UAV platform allows for more efficient 
data collection for large-scale monitoring. Hence, we trained and tested 
models for the NG and UAV datasets separately to examine the model 
performance on different platforms. (2) Leaf age. The NG dataset was 
used to check the model performance in detecting maize seedlings at 
different growth stages. A single maize seedling detection model was 
trained using the NG-train dataset and tested using individual test 
datasets for each leaf age. (3) Image resolution. High-resolution images 
provide finer details, while lower-resolution images are more friendly 
in data storage and processing. By analyzing how the models perform 
with images of different resolutions, we aimed to determine their 
adaptability and effectiveness in diverse operational scenarios. (4) Seed-
ling composition. As the seed vigor may vary, there could be smaller and 
larger seedlings simultaneously in the field. To ensure the model works 
in these situations, we applied the UAV-trained model on individual test 
datasets for different seedling composition scenarios (smaller seedling 
ratios: 0 %, 20 %, 40 %, and 60 %). (5) Planting density. Maize planting 
density differs depending on the maize variety and environmental con-
ditions. We applied the UAV-trained model in the different planting 
density scenarios (plant spacing 60.0 cm, 37.0 cm, 22.2 cm, and 
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15.9 cm). To check the generalizability of the model, the high- and low-
density samples were not included in model training. 

By systematically varying these parameters, the study aimed to pro-
vide a comprehensive evaluation of the capabilities and limitations of 
the YOLOv8n-LP and YOLOv11n-LP models in counting maize seedlings 
under diverse real-world conditions, offering insights into their practi-
cal precision agriculture applications. 

2.4.4. Application of the proposed model for leaf age monitoring 
The proposed models, YOLOv8n-LP and YOLOv11n-LP, were further 

trained to monitor leaf age development. Models were built for the NG 
and UAV platform datasets separately (Table 4). Accuracy was evalu-
ated at both the individual plant level and the plot level. For plot-level 
evaluation, the average leaf age for each plot was computed by averag-
ing the leaf ages of all maize plants within that plot. Both the NG and 
UAV datasets were analyzed to check model adaptability to different 
data collection platforms. 

2.5. Model performance evaluation 

2.5.1. Object detection accuracy metrics 
This study employs average precision (AP), recall (r), and precision 

(p) to assess model accuracy in object detection (Yu et al., 2025). 
Additionally, parameters and model size were recorded to evaluate 
the model efficiency and lightweight characteristics. Intersection over 
union (IoU) provides a measure of spatial overlap between the pre-
dicted and ground truth bounding boxes, which is crucial for determin-
ing the quality of object localization (Everingham et al., 2010). The 
formula is as follows: 

IAOIoU 1
IAU 

IAO represents the area of overlap between the predicted bounding 
boxes and the ground truth. IAU denotes the area of union between 
the predicted bounding boxes and the ground truth. Following Yu 
et al. (2025), we utilized a threshold of 0.5. The predicted bounding 
box is classified as true positive (TP) if IoU ≥ 0.5 and false positive (FP) 
if IoU < 0.5. In cases where the labeled bounding box was not detected, 
we have a false negative (FN) (Padilla et al., 2020). Subsequently, we 
computed r and p. 

TP 
r 2

TP FN 

TP 
p 3

TP FP 

The precision-recall (PR) curve was constructed, with r values on the 
horizontal axis and p on the vertical. The area under this curve is AP. 
Table 5 
Devices used for model efficiency test. 

Device 1 Device 2 Device 3 

Device type Desktop Desktop Tablet PC 
Processor 13th Gen Intel(R) Core(TM) 12th Gen Intel(R) Core(TM) 12th Gen Int

i5-13490F 2.50 GHz i7-1255U 1.70 GHz i7-1255U 1.7
Installed 32.0 GB (31.8 GB usable) 16.0 GB (15.7 GB usable) 16.0 GB (15.
RAM 
Graphics NVIDIA GeForce RTX 4060 Ti AMD Radeon(TM) Graphics Intel(R) lris(
card (8 GB) 
CUDA Capable No No 
acceleration 
System 64-bit 64-bit 64-bit 
type 
Operating Windows 11 Pro Windows 11 Pro Windows 10
system 
Python 3.9.21 3.8.0 3.10.15 
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Full-point interpolation was used to ensure monotonicity of the PR 
curve before the AP estimation (Padilla et al., 2020; Tassinari et al., 
2021). 

1 

AP maxp r′ dr 4 
r′≥r0 

2.5.2. Seedling counting and leaf age monitoring accuracy metrics 
Three metrics were employed to measure the performance of seed-

ling counting: the coefficient of determination (R2), root mean square 
error (RMSE) (Chai and Draxler, 2014), and the relative RMSE 
(rRMSE) (Yu et al., 2025). The R2 and RMSE were specifically utilized 
to evaluate the performance of maize seedlings during monitoring. 

∑n 2 

R2 1 −
∑ 

i
n 
1 ti − ci 

2 5 
i 1 ti − t 

1 
∑n 2RMSE i 1 ti − ci 6 

n 

rRMSE RMSE t 7 

where n is the number of samples, ti is the ground truth number of tar-
get objects, ci is the number of objects detected by the model, and t is 
the average value of all ti. In quantifying the seedling counting perfor-
mance, each sample is one plot image and the target object is each seed-
ling. In quantifying the leaf counting performance at the individual plant 
level, each sample is one seedling image and the target object is each 
leaf tip. In quantifying the leaf counting performance at the plot level, 
each sample is one plot image and the ground truth number of target 
objects is the average leaf age per plot, calculated as the ratio of the total 
number of leaves to the total number of plants in each plot. 

2.5.3. Model complexity and efficiency 
We evaluate the model complexity according to three core metrics: 

model size, number of parameters, and GFLOPs. Model size refers to the 
storage size required for the model, and is measured in megabytes 
(MB). Number of parameters is the number of all the weights and biases 
learned during training, and is measured in millions (M). GFLOPs is the 
number of floating-point operations required for implementing the 
model measured in giga (109). Smaller values of these metrics generally 
indicate less computing complexity (Molchanov et al., 2016). 

Further, to demonstrate the improvement of the model complexity 
and efficiency, we ran the different models on multiple devices and re-
corded the processing time. The five different devices included two 
desktops, one laptop, and two tablet personal computers (PCs), as listed 
in Table 5. The most powerful device is a desktop (device 1), with 
32.0 GB installed random access memory (RAM), 13th Gen Intel 
Device 4 Device 5 

Laptop Tablet PC 
el(R) Core(TM) Intel(R) Core(TM) i7-10510U Intel(R) Atom(TM) CPU E3845 
0 GHz CPU @ 1.80GHz 2.30 GHz @ 1.91GHz 1.91 GHz 
7 GB usable) 8.00 GB (7.76 GB usable) 4.00 GB (3.85 GB usable) 

R) Xe Graphics NVIDIA Quadro P520 (2GB) Intel(R) HD Graphics (64 MB) 

Capable No 

64-bit 64-bit 

 Pro Windows 11 Home Basic Windows 10 Home Basic 

3.11.4 3.8.0 
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(R) Core(TM) i5-13490F 2.50 GHz central computing unit (CPU), and a 
NVIDIA GeForce RTX 4060 Ti (8 GB) GPU. The device with the least 
computing power is a tablet PC (device 5), with 4.0 GB installed 
RAM, Intel(R) Atom(TM) CPU E3845 @ 1.91GHz 1.91 GHz and Intel 
(R) HD Graphics (64 MB). All devices had 64-bit Windows operating 
system. With each device, we used the seven state-of-the-art models 
and the two proposed models to process the same 200 images. The 
200 images are real maize seedling images with 2448 × 2048 pixels. 
The average time used for seedling detection in each image was re-
corded. The average processing time, as well as the standard devia-
tion, were compared. For device 1 and device 4 which had NVIDIA 
GPUs, we also conducted the comparison with GPU acceleration en-
abled by the compute unified device architecture (CUDA) parallel 
computing. 

3. Results 

3.1. Ablation experiment on model improvement 

As shown in Tables 6 and 7, the ablation study results indicate that 
the base models YOLOv8n and YOLOv11n achieved test set precision 
scores of 0.945 and 0.955, respectively, with corresponding AP values 
of 0.970 and 0.976 (Test 1). When all three modules (DAttention, 
BIFPN, and EfficientHead) were integrated (marked with “√”), the 
models achieved the highest detection precision of 0.956 and 0.959 
with much reduced model size and parameters (Test 8), indicating pos-
itive contribution of the modifications. Further applying LAMP reduced 
the model size to below 2 MB with fewer than a million parameters, 
which significantly enhances the applicability of the model in devices 
with limited computing power. 

Checking the contributions of the individual modifications, similar 
patterns were found for both the YOLOv8n-LP and YOLOv11n-LP 
models. DAttention module in the backbone enhanced model accuracy 
but expanded the model size (Test 1 vs 2, 3 vs 5, 4 vs 6, and 7 vs 8). The 
accuracy improvement is possibly due to improved feature representa-
tion for fine-grained details. Conv-BiFPN module in the neck reduced 
model size and computational costs but also degraded the model accu-
racy (Test 1 vs 3, 2 vs 5, 4 vs 7, and 6 vs 8). The improvement in model 
size is possibly due to improved multi-scale feature fusion. The incorpo-
ration of EffiicientHead module in the head generally reduced model 
size but had mixed effects in accuracy. After applying LAMP pruning, 
the models showed a significant reduction in model size and computa-
tional complexity, though with a slight decrease in accuracy. Neverthe-
less, despite the slight decrease in AP and precision, good recall score 
was maintained (Test 8 vs. 9). In YOLOv8n-LP (Test 9 in Table 6), the 
pruned model achieved p = 0.953, r = 0.946, and AP = 0.968, with 
only 0.8 M parameters. Similarly in YOLOv11n-LP (Test 9 in Table 7), 
the pruned model achieved p = 0.948, r = 0.949, and AP = 0.969, 
with only 0.7 M parameters. 
Table 6 
Ablation experiment based on YOLOv8n-LP. 

Test DAttention Conv- Efficient LAMP Parameters M
BiFPN Head (M) (

1 – – – – 3.0 
2 √ – – – 3.8 
3 – √ – – 2.0 
4 – – √ – 2.4 
5 √ √ – – 2.1 
6 √ – √ – 3.9 
7 – √ √ – 1.6 
8 √ √ √ – 1.8 
9 √ √ √ √ 0.8 

Note: “√” means module used and “-” means module removed. 
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3.2. Comparison of different models for maize seedling counting 

Among the seven state-of-the-art models tested, the YOLO models 
demonstrated similar accuracy, with YOLOv11n achieving the highest 
accuracy (p = 0.955, r =  0.951, AP = 0.976, R2 = 0.96, and rRMSE = 
4.96 %) (Fig. 8). The two relatively older models (i.e., Faster R-CNN 
and SSD) had much lower accuracy compared to the YOLO models, 
which was examined by checking the result images (Fig. 9) and
scatterplots (Fig. 10). Faster R-CNN exhibited the highest frequency of 
repeated detections (Fig. 9a), leading to an overestimation of the seed-
ling count (Fig. 10a). In contrast, SSD tended to miss detections (Fig. 9b), 
resulting in an underestimation of the seedling count (Fig. 10b). Among 
the YOLO models, a general increase of accuracy with a three-level stair-
case trend was observed, which was particularly obvious if we look at 
the R2 and rRMSE lines (Fig. 8). In the first level was YOLOv7x, with 
R2 = 0.84 and rRMSE = 9.94 %. In the second level were YOLOv8n, 
YOLOv9t, and YOLOv10n, with R2 = 0.90–0.91 and rRMSE = 
7.46 % ∼ 8.53 %. Finally, the third level hosted YOLOv11n, YOLOv8n-LP, 
and YOLOv11n-LP, with R2 = 0.91–0.96 and rRMSE = 4.96 % ∼ 6.73 %. 

The two proposed models YOLOv8n-LP and YOLOv11n-LP main-
tained high accuracy for maize seedling counting, with rRMSE = 
6.73 % and 5.59 % respectively, which were only below YOLOv11n 
(rRMSE = 4.96 %) and well above the other state-of-the-art models 
(rRMSE = 7.46 % ∼ 22.70 %) (Fig. 8). The model precision and recall, al-
though not as high as YOLOv11n, were still with good balance 
(YOLOv8n-LP: p = 0.953,  r =  0.946; YOLOv11n-LP: p = 0.948, r =  
0.949). 

The proposed YOLOv8n-LP and YOLOv11n-LP not only maintained 
the high seedling counting accuracy of YOLOv11n, but also obtained sig-
nificantly reduced computing complexity. Similar with the accuracy 
trend, the model complexity also exhibited a three-level staircase distri-
bution (Fig. 11). In the first level were Faster R-CNN, SSD, and YOLOv7x, 
with over 90 MB model size, over 26.3 million parameters, and more 
than 60 GFLOPs. The second level accommodated four models, 
i.e., YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n. The model size 
was between 3.7 and 6.1 MB, the parameter size was between 1.8 and 
3.0 million, while the computation amount was between 6.3 and 10.7 
GFLOPs. The two proposed models comprised the third group, with 
the least computation complexity. Among the nine models, they were 
the only two with less than a million parameters and required less 
than 2 GFLOPs. 

Running the models in real seedling detection applications, 
YOLOv8n-LP was the fastest regardless of devices (Table 8). With 
CUDA acceleration activated, all the lightweight YOLO models achieved 
very high computing efficiency (less than 0.1 s/image) which makes the 
improvement less important. However, CUDA acceleration is only avail-
able with certain NVIDIA GPUs and requires over 3 GB installation itself. 
With the very powerful device 1, the efficiency was improved by about 
17.9 % (from 0.056 ± 0.004 s/image by YOLOv8n to 0.046 ± 0.003 s/ 
odel size Dataset: NG-train Dataset: NG-test 
MB) 

p r AP p r AP 

6.0 0.958 0.950 0.980 0.945 0.938 0.970 
6.1 0.960 0.952 0.982 0.950 0.936 0.971 
4.0 0.954 0.945 0.975 0.952 0.933 0.967 
4.8 0.960 0.948 0.975 0.958 0.942 0.971 
4.2 0.955 0.944 0.975 0.952 0.929 0.968 
7.7 0.962 0.952 0.976 0.959 0.952 0.973 
3.3 0.955 0.941 0.972 0.949 0.942 0.969 
3.7 0.959 0.950 0.974 0.956 0.948 0.972 
1.8 0.956 0.942 0.970 0.953 0.946 0.968 

https://0.91�0.96
https://0.90�0.91
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Table 7 
Ablation experiment based on YOLOv11n-LP. 

Test DAttention Conv-
BiFPN 

Efficient 
Head 

LAMP Parameters 
(M) 

Model size 
(MB) 

Dataset: NG-train 

p r AP 

Dataset: NG-test 

p r AP 

1 – – – – 2.6 5.2 0.962 0.958 0.983 0.955 0.951 0.976 
2 √ – – – 2.6 5.3 0.962 0.956 0.982 0.957 0.948 0.977 
3 – √ – – 1.9 4.0 0.957 0.942 0.974 0.958 0.938 0.971 
4 – – √ – 2.3 4.7 0.962 0.952 0.979 0.955 0.949 0.974 
5 √ √ – – 2.0 4.0 0.958 0.944 0.974 0.951 0.945 0.972 
6 √ – √ – 2.3 4.8 0.961 0.952 0.979 0.957 0.95 0.976 
7 – √ √ – 1.7 3.6 0.956 0.943 0.973 0.956 0.938 0.971 
8 √ √ √ – 1.8 3.7 0.957 0.946 0.974 0.959 0.941 0.972 
9 √ √ √ √ 0.7 1.7 0.956 0.946 0.974 0.948 0.949 0.969 

Note: “√” means module used and “-” means module removed. 
image by YOLOv8n-LP). As the computing power downgraded, the im-
provement was increasingly higher and YOLOv11n-LP started to exceed 
all state-of-the-art models and rank 2nd. Using the device with the least 
computing power (device 5), YOLOv8n-LP was the only model that 
could finish seedling detection under 1 s/image, immediately followed 
by YOLOv11n-LP (Table 8). 

3.3. Robustness of the YOLOv8n-LP and YOLOv11n-LP models in seedling 
counting 

This study evaluated the performance of the YOLOv8n-LP and 
YOLOv11n-LP models for maize seedling counting under varying obser-
vation platforms, leaf ages, image resolutions, seedling distributions, 
and planting densities. The results are summarized in Table 9, present-
ing the R2, RMSE, and rRMSE metrics for each experiment. The 
YOLOv8n-LP and YOLOv11n-LP models exhibited consistent perfor-
mance trends across the various factors examined. 

3.3.1. Seedling detection using NG and UAV images 
The proposed models, YOLOv8n-LP and YOLOv11n-LP, demon-

strated high accuracy across both NG and UAV datasets, as shown in 
Table 9. The NG dataset contained between 10 and 70 seedlings per 
image, with an RMSE of less than three seedlings. In contrast, the UAV 
dataset contained 60 to 180 seedlings per image, with RMSE values of 
6.74 and 6.96 seedlings, respectively. However, the normalized accuracy 
Fig. 8. Maize seedlings detection 
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metric, rRMSE, remained below 7 % for both models with both NG and 
UAV platforms. 

The strong correlation between the true and estimated number of 
seedlings was evident, with YOLOv8n-LP and YOLOv11n-LP achieving 
R2 values of 0.91 and 0.94 on the NG dataset, and 0.96 and 0.95 on the 
UAV dataset. This correlation is further illustrated by the data points 
aligning closely with the 1:1 line in Fig. 12. Some instances of severe un-
derestimation were observed, as indicated by the yellow circles in 
Fig. 12. Despite these underestimations, the testing data showed a 
close alignment with the 1:1 line, demonstrating the models' strong 
generalization capability on new data, even with slight biases in the 
training predictions. 

3.3.2. Seedling detection at different leaf ages 
Examples of the seedling detection results across different leaf age 

stages (V2, V3, V4, V5) are illustrated in Fig. 13. The model detected 
bounding boxes aligned well with the annotated ground truths, which 
reflected the high accuracy (Table 9) and strong robustness of both 
models. This was also embodied by the scatterplots, where all samples 
were located close to the 1:1 line (Fig. 14). At the V2 stage, both 
YOLOv8n-LP (R2 = 0.96, rRMSE = 4.50 %) and YOLOv11n-LP (R2 = 
0.96, rRMSE = 4.07 %) demonstrated optimal accuracy, indicating that 
early-stage seedling morphology is highly conducive to detection. As 
the leaves continued to develop, the performance of both models 
downgraded but remained high (RMSE≤2.95 and rRMSE≤7.27 %). 
accuracy of different models. 

https://rRMSE�7.27
https://RMSE�2.95
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Fig. 9. Maize seedlings detection in different models: (a) Faster R-CNN, (b) SSD, (c) Yolo V7x, (d) YOLOv8n, (e) YOLOv9t, (f) YOLOv10n, (g) YOLOv11n, (h) YOLOv8n-LP, (i) YOLOv11n-LP. 
3.3.3. Seedling detection at different spatial-resolution images in UAV 
Across five different image resolutions (i.e., 1.87 mm, 2.21 mm, 

2.95 mm, 3.40 mm, and 4.47 mm), both YOLOv8n-LP and YOLOv11n-
LP exhibited high consistency with the ground truth (Fig. 15). The per-
formance of the two models showed a similar decreasing pattern as the 
image resolution became finer (Table 9, Fig. 16). Both models achieved 
low rRMSEs at 3.40 mm (YOLOv8n-LP: 3.30 %; YOLOv11n-LP: 3.34 %) 
and 4.47 mm (YOLOv8n-LP: 3.06 %; YOLOv11n-LP: 4.11 %). The dataset 
at the 2.21 mm resolution (UAV-2.21-test) contained only two images, 
so accuracy is not considered when observing the trend. This trend sug-
gests that higher-resolution images might introduce unnecessary com-
plexity, which does not necessarily improve detection accuracy. At the 
finest image resolution (1.87 mm), the number of seedlings was 
underestimated (Fig. 14a and  Fig. 14f) due to the omission of small 
seedlings (Fig. 15a and  Fig. 15f). 

3.3.4. Seedling detection at different seedling compositions in UAV 
Examples of the seedling detection results of different seedling com-

positions are illustrated in Fig. 17. The distribution of the big and small 
bounding boxes clearly reflected the proportion of small seedlings, 
which indicated that the detected results correctly reflect the seedling 
compositions. As the proportion of small seedlings increased, more de-
tection errors occurred (Fig. 18), although the accuracy remained high 
(Table 9). The highest detection accuracy was achieved when all seed-
lings had similar sizes (the 0 % scenario), with an rRMSE of 1.09 % for 
YOLOv8n-LP and 2.28 % for YOLOv11n-LP. As the small seedling propor-
tion increased to 20 %, 40 %, and 60 %, the detection accuracy of 
YOLOv8n-LP decreased to rRMSE values of 5.55 %, 4.36 %, and 9.29 %, 
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while YOLOv11n-LP demonstrated rRMSE values of 4.26 %, 5.64 %, and 
9.20 %, respectively. Despite the decrease in accuracy, both the 
YOLOv8n-LP (Fig. 18 a-d) and YOLOv11n-LP (Fig. 18 e-h) models main-
tained strong correlations between the true number of seedlings and 
the estimated values, demonstrating their robustness for seedlings 
with uneven growths. 

3.3.5. Seedling detection at different planting densities in UAV 
The model performance was further evaluated under varying seed-

ling densities (Fig. 19), although only trained with images at the 
22.2 cm spacing. YOLOv8n-LP achieved its best performance at a spacing 
of 22.2 cm, with rRMSE = 3.38 %, while YOLOv11n-LP performed the 
best at the densest spacing of 15.9 cm, with rRMSE = 3.96 %. At wider 
plant spacings of 37.0 cm and 60.0 cm, both models experienced a de-
cline in performance. For instance, YOLOv8n-LP's rRMSE increased to 
5.28 % and 7.93 %, while YOLOv11n-LP recorded rRMSE values of 
8.87 % and 8.71 % (Table 9). These results suggest that YOLOv8n-LP per-
forms better under moderate seedling densities (22.2 cm and 37.0 cm), 
while YOLOv11n-LP is more trustworthy at the extreme density levels 
(i.e., 15.9 cm) (Fig. 20). 

3.4. Leaf age monitoring using YOLOv8n-LP and YOLOv11n-LP 

3.4.1. Individual-plant-level leaf counting 
The proposed models also demonstrated outstanding performance 

in leaf age detection, whether on NG devices or UAVs. There is a high 
correlation between actual and predicted leaf ages at the individual 
plant scale (Fig. 21). The predicted data was concentrated around the 
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Fig. 10. Comparison of ground truth and estimated number of seedlings based on NG-train and NG-test datasets. 
1:1 line, indicating that the model predictions are very close to the ac-
tual results. The statistical distribution of the individual plant leaf ages 
was well reflected in the model detected results. The RMSE of both 
models on the NG dataset was half a leaf. On the UAV dataset, the 
YOLOv8n-LP model still maintained RMSE = 0.503. However, the 
YOLOv11n-LP had much higher RMSE = 1.024, with severe underesti-
mation errors. 
Fig. 11. Model complexity. 
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3.4.2. Plot-level leaf age monitoring 
Table 10 presents the performance evaluation of YOLOv8n-LP and 

YOLOv11n-LP across two platforms (NG and UAV). YOLOv8n-LP 
outperformed YOLOv11n-LP on both platforms. On the NG platform, 
YOLOv8n-LP achieved an R2 of 0.88, RMSE of 0.143, and rRMSE of 
5.73 %, while YOLOv11n-LP achieved an R2 of 0.75, RMSE of 0.188, and 
rRMSE of 7.54 %. On the UAV platform, YOLOv8n-LP reaches an R2 of 
0.93, RMSE of 0.204, and rRMSE of 9.24 %, clearly outperforming 
YOLOv11n-LP, which had an R2 of 0.89, RMSE of 0.319, and rRMSE of 
14.44 %. 

On the NG platform, YOLOv8n-LP tended to underestimate the leaf 
age, with more samples labeled as V2 (Fig. 22a), while YOLOv11n-LP 
tended to overestimate the leaf age, with more samples labeled as V3 
(Fig. 22b). The two models had similar accuracy. For the UAV platform, 
the trend was opposite with YOLOv8n-LP tending to give higher esti-
mates and YOLOv11n-LP favoring lower estimates. As a result, 
YOLOv11n-LP had higher classification accuracy for V1 and YOLOv8n-
LP had high accuracy for V2-V4. 
4. Discussion 

In this study, we proposed two lightweight models, YOLOv8n-LP and 
YOLOv11n-LP, for maize seedling counting and leaf age monitoring in 
the field. Despite the compact size (1.8 MB and 1.7 MB), the models 
demonstrated exceptional performance in detecting and tracking 
maize seedling growth using multi-temporal RGB images. They 
achieved satisfactory results across images captured from both NG and 
UAV platforms, demonstrating high robustness and reliability, thereby 



T. Jiang, L. Li, Z. Zhang et al. Artificial Intelligence in Agriculture 16 (2026) 164–186 

Table 8 
Image processing time (s/image). 

Model Device 1 Device 4 Device 1 Device 2 Device 3 Device 4 Device 5 
- CUDA - CUDA 

Faster R-CNN 0.175 ± 0.028 8.647 ± 1.104 23.931 ± 0.221 4.906 ± 0.080 120.253 ± 22.038 95.606 ± 5.088 3936.663 ± 332.272 
SSD 0.245 ± 0.013 0.980 ± 0.207 0.238 ± 0.009 0.634 ± 0.021 0.390 ± 0.026 1.013 ± 0.243 6.364 ± 0.384 
YOLOv7x 0.171 ± 0.033 1.189 ± 0.651 0.700 ± 0.012 2.068 ± 0.037 2.046 ± 0.623 3.865 ± 0.590 23.608 ± 0.518 
YOLOv8n 0.026 ± 0.015 0.053 ± 0.022 0.056 ± 0.004 0.145 ± 0.006 0.123 ± 0.006 0.201 ± 0.033 1.603 ± 0.775 
YOLOv9t 0.037 ± 0.020 0.077 ± 0.022 0.148 ± 0.006 0.280 ± 0.010 0.151 ± 0.012 0.326 ± 0.039 2.548 ± 0.244 
YOLOv10n 0.037 ± 0.023 0.061 ± 0.045 0.111 ± 0.006 0.178 ± 0.007 0.177 ± 0.043 0.250 ± 0.031 1.855 ± 0.300 
YOLOv11n 0.040 ± 0.026 0.058 ± 0.051 0.094 ± 0.004 0.157 ± 0.013 0.134 ± 0.013 0.203 ± 0.024 1.513 ± 0.266 
YOLOv8n-LP 0.021 ± 0.016 0.053 ± 0.025 0.046 ± 0.003 0.103 ± 0.010 0.087 ± 0.004 0.127 ± 0.022 0.916 ± 0.105 
YOLOv11n-LP 0.037 ± 0.023 0.055 ± 0.029 0.066 ± 0.003 0.130 ± 0.012 0.105 ± 0.015 0.156 ± 0.019 1.046 ± 0.129 

Note: in each column, the top two models are bolded and the top one model is italic. 
making them highly efficient for field applications with minimal com-
putational overhead. 

4.1. Significance of the proposed models 

The lightweight YOLOv8n-LP and YOLOv11n-LP models proposed in 
this study make significant contributions to the field of maize seedling 
and leaf age monitoring, addressing three key challenges in current re-
search. First, they provide a balanced solution by offering high accuracy 
and reduced model complexity. Second, increased environmental 
adaptability was achieved. Third, the new models were capable of si-
multaneously monitoring maize seedling count and leaf age in complex 
field environments. Hence, they represent a promising tool for precision 
agriculture and can significantly enhance decision-making in maize 
growth management. It is also fair to infer that the model has high po-
tential to be applied to similar crops such as sorghum. With proper 
training, it may also be transferred to other row-planting crops. 

4.1.1. Comparison with existing models 
First, the proposed models demonstrate significant improvement in 

accuracy, computational efficiency, and model size. Earlier lightweight 
models targeting large YOLOv4 or YOLOv5 models were over 40 MB in 
model size (Gao et al., 2022b; Li and Wu, 2022), while the maize seed-
ling detection precision varied from 88.5 % to 96.25 %. The high demand 
for storage and computational resources made them less practical in 
resource-constrained environments. A recent study shrank the model 
size to 5.04 MB by modifying the YOLOX‑tiny model, which was 
Table 9 
Evaluation of YOLOv8n-LP and YOLOv11n-LP across five different factors. 

Experiment Category Dataset 

Platform NG NG-test 
UAV UAV-test 

Leaf age V2 NG-V2-test 
V3 NG-V3-test 
V4 NG-V4-test 
V5 NG-V5-test 

Resolution (mm) 1.87 UAV-1.87-test 
2.21* UAV-2.21-test* 
2.95 UAV-2.95-test 
3.40 UAV-3.40-test 
4.47 UAV-4.47-test 

Seedling composition (%) 0 UAV-0-test 
20 UAV-20-test 
40 UAV-40-test 
60 UAV-60-test 

Density (cm) 60.0 UAV-60.0 
(not included in the training process) 37.0 UAV-37.0 

22.2 UAV-22.2 
15.9 UAV-15.9 

Note: UAV-2.21-test* only contained one image. 
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successfully applied in a maize tassel detection task (Song et al., 
2023). The YOLOv8n-LP model proposed in this study is as small as 
1.8 MB with only 0.8 M parameters, while YOLOv11n-LP is only 
1.7 MB with 0.7 M parameters. This reduction in model size significantly 
lowers the computational burden. The time required for processing in-
dividual images was reduced by at least 20 %, which got more significant 
when the device had less computing power. We have installed the 
YOLOv8n-LP model in a Raspberry Pi4B device which was only 8 cm 
in size with a 64-bit 1.5 GHz quad-core CPU, and accurately counted 
maize seedlings within 0.4 s for a single image. Meanwhile, a high 
level of accuracy was maintained. The accuracy is even higher than 
the heavyweight models Faster R-CNN, SSD, and YOLOv7x, while com-
parable to YOLOv8n, YOLOv9t, and YOLOv10n (Fig. 8). The optimal bal-
ance between accuracy and model size enables the model to be 
deployed effectively in real-time monitoring systems and on mobile de-
vices. For future applications, these lightweight modifications can be 
implemented to create small models to be installed on more affordable 
devices. 

Second, the proposed models exhibit strong robustness under vari-
ous field environments. Applied to multiple complex scenarios with dif-
ferent platforms, leaf ages, resolutions, and seedling compositions, the 
maize seedling counting error ranged from rRMSE = 1.09 % to rRMSE = 
9.29 % (Table 9). Most existing studies have considered only one to two 
factors (e.g., Bai et al., 2022; Liu et al., 2023). Jia et al. (2024) assessed 
five deep learning models (i.e., YOLOv8n, YOLOv5n, Deformable DETR, 
Faster R-CNN and YOLOv3‑tiny) in counting maize seedling with vary-
ing planting densities, growth stages, and flight altitudes, tests of five 
YOLOv8n-LP YOLOv11n-LP 

R2 RMSE rRMSE R2 RMSE rRMSE 

0.91 2.64 6.73 % 0.94 2.19 5.59 % 
0.96 6.74 5.66 % 0.95 6.96 5.85 % 
0.96 1.84 4.50 % 0.96 1.67 4.07 % 
0.94 2.39 7.27 % 0.95 2.18 6.23 % 
0.68 2.43 5.63 % 0.77 2.04 4.73 % 
0.56 2.56 6.93 % 0.60 2.95 6.94 % 
0.96 8.64 6.74 % 0.95 8.74 6.82 % 
N/A* 5.00* 3.82 %* N/A* 2.00* 1.53 %* 
0.95 8.57 6.31 % 0.94 8.95 6.59 % 
0.90 3.46 3.30 % 0.95 3.48 3.34 % 
0.93 3.02 3.06 % 0.81 4.05 4.11 % 
0.96 1.06 1.09 % 0.84 2.20 2.28 % 
0.97 7.43 5.55 % 0.96 5.71 4.26 % 
0.93 5.22 4.36 % 0.94 6.75 5.64 % 
0.94 9.87 9.29 % 0.95 9.77 9.20 % 
0.78 4.77 7.93 % 0.69 5.24 8.71 % 
0.73 5.66 5.28 % 0.53 9.52 8.87 % 
0.79 5.51 3.38 % 0.60 9.79 6.00 % 
0.33 21.65 10.82 % 0.48 7.92 3.96 % 
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Fig. 12. Comparison of ground truth and estimated number of maize seedlings. 
(a) YOLOv8n-LP model applied to the NG data. (b) YOLOv11n-LP model applied to the 
NG data. (c) YOLOv8n-LP model on UAV data. (d) YOLOv11n-LP model on UAV data. 
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models. While working only on UAV images, they had similar findings 
to our study, that accuracy declined as planting density, canopy over-
lap, and altitude increased. Our study went one-step further, 
considering not only UAVs but also near-ground or handheld devices. 
The results demonstrate that the YOLOv8n-LP and YOLOv11n-LP 
models maintain robust performance under complex field conditions, 
thereby providing a reliable and efficient solution for real-time field 
monitoring. 

Additionally, the YOLOv8n-LP and YOLOv11n-LP, with a plant-to-
leaf two-step application, can monitor the maize leaf age together 
with seedling count from images captured in the field environment. 
Compared to indoor single-plant maize leaf detection (Ning et al., 
Fig. 13. Seedling detection results of different leaf age stages (V2, V3, V4, and V5 respe
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2024; Xie et al., 2023), this method more accurately captures the varia-
tions in actual growing conditions, overcoming the complexities of field 
environments that indoor experiments cannot replicate. Compared to 
existing in-field leaf counting studies that segment plants with one 
deep learning model and then identify leaves with another (Xu et al., 
2023; Xu et al., 2022), our proposed approach grants three advantages. 
First, the annotation process for plant identification is markedly simpli-
fied. Instead of digitizing the exact maize plant boundary, pulling simple 
bounding boxes is enough. Second, because a single model structure is 
used in both steps, the configuration of the coding environment 
becomes much more streamlined. Third, computational cost is signifi-
cantly reduced. Switching to YOLOv8n-LP and YOLOv11n-LP from the 
larger models, the two-step process can be carried out with a minimal 
1.4–1.6 million parameters. 

4.1.2. Visualization of model attention 
We have conducted visual interpretability analysis using gradient-

weighted class activation mapping (Grad-CAM) (Selvaraju et al., 
2017) to highlight the attention regions of the proposed model during 
inference. Four examples are provided, with two showing the seedling 
detection task (Fig. 23a and  Fig. 23b) and two for the leaf-tip detection 
task (Fig. 23c and Fig. 23d). The top row displays the original RGB im-
ages and annotated bounding boxes, the middle row shows the atten-
tion heatmaps by YOLOv8n-LP overlaid on the input images, while the 
bottom row shows the attention heatmaps by YOLOv11n-LP overlaid 
on the input images. The example in Fig. 23a has maize seedlings of dif-
ferent orientations and sizes, with small weeds and cracked soil as the 
background. The example in Fig. 23b has maize seedlings with small 
weeds and flat terrain as the background. Fig. 23c shows a maize seed-
ling at V3 stage exposed to intense illumination, while Fig. 23d shows  a  
seedling having four leaf-tips with moderate illumination. In all the 
examples, both models focus on the central region of each target. 
These visualizations demonstrate that the model is not only learning 
spatially meaningful patterns but also aligning well with human-
interpretable plant structures. 

4.1.3. Ablation interpretation 
The mechanism behind the significance of the proposed models is 

tested through the ablation experiment and discussed as follows. The 
ablation study results (Table 6, Table 7) indicate that the combination 
of the DAttention mechanism, Conv-BiFPN module, EfficientHead, and 
LAMP significantly reduced computational cost while maintaining 
good model accuracy. 

The DAttention mechanism, for both YOLOv8n-LP and YOLOv11n-
LP, improved the model accuracy. We suppose the enhanced accuracy 
ctively from left to right). (a-d) YOLOV8n-LP results. (e-h) YOLOV11n-LP results. 
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Fig. 14. Comparison of ground truth and estimated seedling numbers at different leaf stages (V2, V3, V4, and V5 respectively from left to right). (a-d) YOLOV8n-LP results. (e-h) YOLOV11n-
LP results. 
can be attributed to the improved efficacy in capturing fine-grained de-
tails. This is supported by Wang et al. (2024b), which similarly high-
lighted that the DAttention module significantly enhanced model 
performance, primarily due to its ability to capture key features and im-
prove overall model accuracy. The conclusion aligns with the findings of 
this study, further supporting the potential application of this mecha-
nism in complex scenarios. 

The Conv-BiFPN module slightly degraded model accuracy while 
significantly reducing the model size, by integrating multi-scale feature 
fusion. These results demonstrate the superior ability of BiFPN to effi-
ciently capture key information across different scales. In comparison, 
Mo and Wei (2024) introduced the traditional BiFPN into the segmenta-
tion model YOLOv8n-seg, which significantly enhanced multi-scale fea-
ture integration and improved segmentation accuracy. However, the 
Fig. 15. Seedling detection results of different spatial resolutions (1.87 mm, 2.21 mm, 2.95 mm
YOLOV11n-LP results. 
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computational complexity increased, challenging the model efficiency. 
The Conv-BiFPN module proposed in this study reduces computational 
load through architectural optimization. This improvement achieves a 
better balance between efficiency and performance, providing en-
hanced practicality and adaptability for object detection tasks in com-
plex scenarios. 

The EfficientHead module further reduced computational complex-
ity. By introducing the group convolution strategy, the computation 
load was significantly reduced. While the DSC in YOLOv11n is already 
a quite effective lightweight structure compared to the regular dense 
convolution in YOLOv8n, the EfficientHead adopted in this study suc-
cessfully further reduced the model size by about 10 %. Compared to 
original decoupled head, the EfficientHead achieved a good balance be-
tween efficiency and performance, providing an effective and practical 
, 3.40 mm, and 4.47 mm, respectively from left to right). (a-e) YOLOV8n-LP results. (f-j) 
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Fig. 16. Comparison of ground truth and estimated seedling numbers based on different spatial-resolution images using YOLOv8n-LP (a-e) and YOLOv11n-LP (f-j). The resolutions from left 
to right are 1.87 mm, 2.21 mm, 2.95 mm, 3.40 mm, and 4.47 mm. 
solution for object detection tasks in complex scenarios. This echoes 
conclusions in previous studies that lightweight design for detection 
head structures can significantly enhance inference speed and resource 
efficiency while maintaining detection accuracy (Tan et al., 2020). 

Finally, by utilizing LAMP pruning techniques, the model parameter 
and overall model size were reduced by over 50 %. Although rarely used 
in crop seedling detection, over three thousand papers on pruning tech-
niques have been published in the past five years (Cheng et al., 2024). 
The LAMP algorithm used in this study belongs to the unstructured 
pruning category, which is the finest-grained pruning (Cheng et al., 
2024; Su et al., 2020). It is applied after training, following a pretrain-
prune-retrain process. In the future, it is worthwhile to test other 
types of pruning techniques for seedling detection tasks. 
Fig. 17. Seedling detection results of different seedling compositions, with the proportion of sma
YOLOV11n-LP results. 
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4.2. Robustness of proposed models in seedling counting 

4.2.1. Robustness across trained scenarios 
The proposed models demonstrated excellent and stable detection 

performance across different platforms, leaf ages, resolutions, and seed-
ling compositions. 

4.2.1.1. Different platforms. When applied to UAV imagery, the model ex-
hibited robust performance, with R2 and rRMSE values comparable to 
those obtained in NG scenarios. The minimal differences underscore 
the model's adaptability in diverse environments (Yu et al., 2024). We 
notice that the training dataset exhibited some underestimation 
(Fig. 12), primarily from images containing the highest proportion of 
ll seedling being 0 %, 20 %, 40 %, and 60 % from left to right. (a-d) YOLOV8n-LP results. (e-h) 
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Fig. 18. Comparison of ground truth and estimated number of seedlings based on different seedling composition images by YOLOv8n-LP (a-d) and YOLOv11n-LP (e-h). The proportion of 
small seedlings from left to right is 0 %, 20 %, 40 %, and 60 %, respectively. 
small seedlings and their augmented dataset (Fig. 24). Two key factors 
likely contributed to this underestimation: the significant morphologi-
cal differences between small and large seedlings during the early 
growth stage and the favorable conditions for weed growth at the 
early seedling stage, which resulted in dense weed coverage that inter-
fered with detection. Future research could prioritize improving the 
ability of the model to detect small seedlings. Despite these challenges, 
the YOLOv8n-LP and YOLOv11-LP models maintained strong and 
Fig. 19. Seedling detection results of different plant spacings (60.0 cm, 37.0 cm, 22.2 cm, a
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consistent performance in maize seedling detection across both NG 
and UAV scenarios, supporting efficient crop monitoring under varying 
conditions and scales. 

The UAV dataset was augmented for model training. To check the 
impact of data augmentation on the model performance, we examined 
the model accuracy with and without augmentation. We trained two 
YOLOv8n-LP models, one trained using only the original data, and the 
other trained using the augmented dataset. The accuracy of both models 
nd 15.9 cm from left to right). (a-d) YOLOV8n-LP results. (e-h) YOLOV11n-LP results. 
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Fig. 20. Comparison of ground truth and estimated number of seedlings in plots with different planting densities by YOLOv8n-LP (a) and YOLOv11n-LP (b). 
was tested using an independent test dataset comprised with only orig-
inal data. The model precision increased from 0.948 to 0.951, recall in-
creased from 0.870 to 0.934, and AP increased from 0.912 to 0.964. 
The same pattern was found for YOLOv11n-LP, with precision, recall, 
and AP increasing from 0.948, 0.862, and 0.908 to 0.948, 0.918, and 
0.956, respectively. These results demonstrate that the data augmenta-
tion step did not add noise to the model but rather brought positive 
impacts. 

The NG platform, although a bit slow to operate in the field, holds 
several advantages as a maize seedling monitoring device. First, the 
data collection is straightforward compared to UAV data collection 
which requires professional software, training, and pre-processing. 
Second, the NG data has higher spatial resolution than UAV images, 
which contributed to the higher accuracy of the models. Third, the NG 
Fig. 21. Evaluation of individual-plant-level leaf counting. (a) YOLOv8n-LP on the NG-leaf-
test dataset. (b) YOLOv11n-LP on the NG-leaf-test dataset. (c) YOLOv8n-LP on the UAV-
leaf-test dataset. (d) YOLOv11n-LP on the UAV-leaf-test dataset. 
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platform is useful toward the development of more convenient 
equipment in the future. Four, it is much more affordable than UAV. 
We propose several pathways to streamline the NG data collection: 
(1) to mount the pole on the self-propelled crane with precise GPS or 
plot tracking, and (2) to integrate the model into other NG devices 
such as smartphones. Such modifications would further enhance porta-
bility, lower hardware costs, and make the system more accessible for 
broader agricultural applications. 

4.2.1.2. Different leaf ages in NG images. YOLOv8n-LP and YOLOv11n-LP 
exhibited a consistent performance trend across datasets with different 
leaf-age stages. The model performed exceptionally well during the 
early stages of development (V2), achieving high detection accuracy 
due to the relatively simple structure of the seedlings, where leaves 
are more distinct and less likely to overlap. The low accuracy during 
the V3 stage (Table 9) was due to the interference caused by experi-
ments with seedlings of varying sizes (Bai et al., 2022). In the same 
plot, seedlings with late emergence were photographed at the VE 
stage, appearing very similar to weeds (Fig. 25a), which caused a signif-
icant error. The accuracy of the identification results improved substan-
tially after two days, when the maize seedlings had grown (Fig. 25b). 
When detecting maize seedlings beyond the VE stage, weed interfer-
ence has minimal impact on model accuracy (Fig. 26). However, the 
model accuracy declined as the leaf age progressed to the V5 stage. 
This decline can be attributed to increased leaf overlap during seedling 
development, which complicates identifying individual leaves (Bai 
et al., 2022). Overlapping leaves obscure key features within the 
image, making it difficult for the model to detect and classify the seed-
lings accurately. 

In future experiments, spectral information can be utilized to further 
differentiate between weeds and seedlings at the VE stage. Spectral in-
formation provides the reflectance characteristics of plants at different 
wavelengths, which is very effective for distinguishing plants that are 
morphologically similar but have different physiological characteristics. 
Table 10 
Evaluation of the proposed models across two platforms in plot-level leaf age estimation. 

Platform Model R2 RMSE rRMSE 

NG 
YOLOv8n-LP 
YOLOv11n-LP 

0.88 
0.75 

0.143 
0.188 

5.73 % 
7.54 % 

UAV 
YOLOv8n-LP 
YOLOv11n-LP 

0.93 
0.89 

0.204 
0.319 

9.24 % 
14.44 % 
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Fig. 22. Confusion Matrix of plot-level leaf counting. (a) YOLOv8n-LP on the NG dataset. 
(b) YOLOv11n-LP on the NG dataset. (c) YOLOv8n-LP on the UAV dataset. 
(d) YOLOv11n-LP on the UAV dataset. 
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By integrating spectral information with existing detection models, the 
accuracy of maize seedling detection can be significantly improved, re-
ducing the occurrence of error points and thereby providing more reli-
able data support for maize field management. 

4.2.1.3. Different spatial resolution in UAV images. The YOLOv8n-LP and 
YOLOv11-LP models demonstrated strong robustness identifying 
maize seedlings from UAV images of varying resolutions. Typically, 
higher image resolution provides more detailed features, contributing 
to improved detection accuracy. However, in this study, higher-
resolution images performed less effectively in detection tasks. This dis-
crepancy is attributed to information loss during image preprocessing, 
as the model resizes all input images to a uniform size of 640 × 640 
pixels. Images with resolutions of 1.87 mm and 2.95 mm, initially 
sized at 3985 × 4472 and 2486 × 2781 pixels, were resized by factors 
Fig. 23. Visualizations for the seedling counting task based on Grad-CAM: (a, b) M
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of 6 and 4, respectively. We suppose that the down-sampling obscured 
critical texture and small object details, which ultimately resulted in 
poor detection performance. In contrast, images with lower resolution 
(such as 3.40 mm and 4.47 mm) were able to retain relatively more use-
ful features during compression, which contributed to improved detec-
tion performance. These issues demonstrate that in detection tasks 
involving high-resolution images, it is not only the original resolution 
that matters but also the balance between image compression, informa-
tion retention, and model adaptation, which is crucial for achieving op-
timal detection performance (Yu et al., 2024). 

4.2.1.4. Different seedling compositions in UAV images. Based on Fig. 17, it  
is evident that the YOLOv8n-LP and YOLOv11-LP models maintain a 
strong correlation between the actual and predicted number of maize 
seedlings across varying proportions of small seedlings. As the propor-
tion of small seedlings increases (from 0 % up to 60 %), there is a slight 
increase in the deviation from the 1:1 line, indicating a gradual rise in 
the rRMSE. This trend suggests that the complexity of the seedling com-
position deteriorate the model accuracy, which is consistent with the 
findings of Bai et al. (2022). However, both models still demonstrate a 
high level of accuracy, showing robustness even in more challenging 
scenarios with mixed seedling sizes. These findings underscore the 
model's adaptability in diverse field conditions and suggest that 
YOLOv8n-LP and YOLOv11-LP are well-suited for practical applications 
in UAV-based maize seedling monitoring. 

4.2.2. Generalizability to untrained scenarios 
Although the training dataset only contained images of maize plots 

with 22.2 cm spacing, both YOLOv8n-LP and YOLOv11n-LP were able 
to accurately identify maize seedlings at lower and higher planting den-
sities. YOLOv8n-LP showed superior generalizability to moderate plant 
densities (22.2 cm and 37.0 cm spacings), which are typical of conven-
tional field conditions. Under such conditions, the canopy overlap was 
moderate and the detection mainly depended on clear object bound-
aries, which YOLOv8n-LP could capture effectively. In contrast, 
YOLOv11n-LP demonstrated greater robustness under extreme densi-
ties at 15.9 cm. At such planting density, the canopy overlap increased 
substantially, resulting in more occlusion and reduced visible gaps be-
tween plants. These challenging conditions placed higher demands on 
the model's ability to extract discriminative features from crowded 
individuals. YOLOv11n-LP demonstrated greater robustness in this sce-
nario than YOLOv8n-LP, probably thanks to its added module, 
aize plots for seedling detection. (c, d) Maize seedlings for leaf-tip detection. 
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Fig. 24. Maize seedling detection results. (a) Image with 60 % small seedlings at NG dataset (Sep. 7. 2023). (b) Image with 60 % small seedlings at UAV dataset (July 13. 2023). 
i.e., Cross-Channel Position-aware Spatial Attention (C2PSA). C2PSA in-
corporates a parallel spatial attention mechanism that strengthens the 
model's ability to distinguish fine-grained spatial features under condi-
tions of severe occlusion (Khanam and Hussain, 2024). This possibly has 
led to the improved performance of YOLOv11n-LP in discriminating 
highly overlapped plants, thereby outperforming YOLOv8n-LP at ex-
treme planting densities. This characteristic is of practical importance: 
as modern maize cultivation increasingly shifts toward high-density 
planting to maximize land use efficiency (Jafari et al., 2024), the stron-
ger performance of YOLOv11n-LP in dense planting conditions suggests 
it may offer greater potential for deployment in precision agriculture 
applications. 

4.3. Leaf age monitoring using proposed models 

The YOLOv8n-LP and YOLOv11n-LP models exhibited strong perfor-
mance in leaf age detection on both near-ground and UAV-acquired 
datasets, showing high precision and accuracy, especially during the 
early V2 stage of maize seedling growth. Results indicate that the 
model can predict leaf age with minimal error, as demonstrated by 
Fig. 25. Maize seedling detection results. Yellow circles mark maize seedlings that are difficult 
plot two days later (Sep. 9, 2023). (For interpretation of the references to colour in this figure 
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the strong correlation between predicted and actual values. However, 
several limitations were identified. The detection accuracy declined in 
the later stages (V5), likely due to increased leaf overlap, which compli-
cates feature extraction (Xu et al., 2022). This observation is consistent 
with the results discussed in Section 4.2.1, where plant detection accu-
racy also decreased during the V5 stage. 

In the context of plot-level leaf age estimation, YOLOv8n-LP exhib-
ited better generalization and adaptability, outperforming 
YOLOv11n-LP on both NG and UAV platforms. Both models had lower 
accuracy processing the UAV data (rRMSE = 9.24 %–14.44 %) than the 
NG data (rRMSE = 5.73 %–7.54 %). This is possibly due to lost fine-
grained features essential for seedling detection and growth stage 
assessment (Zhang et al., 2024). The higher RMSE values observed on 
the UAV dataset call for more effort on leaf age identification from 
low-resolution or aerial imagery. 

One challenge in leaf age monitoring is that some leaves get oc-
cluded by other leaves above them because the NG and UAV images 
are taken from nadir view. Our strategy of targeting leaf tips instead of 
the entire leaves enabled us to significantly alleviate this problem. 
Nonetheless, looking ahead, to obtain oblique photos from multiple 
to distinguish from weeds. (a) Small seedlings at the VE stage (Sep. 7. 2023). (b) The same 
legend, the reader is referred to the web version of this article.) 
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Fig. 26. Seedling detection results with different levels of weed interference: (a-b) NG dataset, (c-d) UAV dataset. 
angles is worth investigating for a more complete characterization of 
the seedlings. 

5. Conclusions 

This study introduces two lightweight deep learning models, 
YOLOv8n-LP and YOLOv11n-LP, developed to track maize seedling 
count and leaf age from high-resolution RGB images captured by NG 
and UAV platforms. Compared to the state-of-the-art YOLOv8n and 
YOLOv11n models, YOLOv8n-LP (parameters = 0.8 M, model size = 
1.8 MB) and YOLOv11n (parameters = 0.7 M, model size = 1.7 MB) re-
duce parameters by over 73 %. The image processing efficiency was sig-
nificantly improved, especially on devices with limited computation 
power. Meanwhile, the proposed models maintain performance com-
parable to YOLOv11n while outperforming classic models such as Faster 
R-CNN, SSD, and YOLOv7x, YOLOv8n, YOLOv9t, and YOLOv10n. 

The two proposed models demonstrate strong performance across 
various datasets, effectively managing differences in observation plat-
forms, leaf age, and planting density. The model achieves its highest ac-
curacy during the V2 stage of seedling growth and maintains reliable 
performance across all seedling proportion scenarios, with rRMSE 
values below 10 %. While detection accuracy decreases at lower image 
resolutions, they perform optimally at 3.40 mm and remain accurate be-
tween 1.87 and 4.47 mm. It also adapts well to varying seedling compo-
sitions, performing reliably even as the proportion of small seedlings 
increases. Although the models were trained exclusively at a plant spac-
ing of 22.2 cm, they maintained satisfactory accuracy in scenarios with a 
spacing of 37.0 cm and 60.0 cm. While YOLOv8n-LP had slightly lower 
accuracy (rRMSE = 10.82 %) at higher density (15.9 cm spacing), likely 
due to interference from weeds and plant overlap, the YOLOv11n-LP 
model demonstrates greater robustness (rRMSE = 3.96 % at 15.9 cm 
spacing). Despite these challenges, the models effectively monitor seed-
ling counts and leaf age development, making them well-suited for real-
time in-field crop monitoring  applications.  

In future research, the YOLOv8n-LP and YOLOv11n-LP models could 
be deployed on portable devices for real-time maize monitoring, 
leveraging their lightweight architecture. Their applicability to monitor-
ing other crops or other maize organs is worth investigating. Moreover, 
future efforts can focus on improving the model scalability for large-
scale agricultural applications, which involves automated target region 
boundary identification, enhanced weed resistance, and validation 
across broader geographic areas. 
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