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Abstract

Spatiotemporal gene expression shapes key agronomic traits, yet tissue-specific
prediction remains challenging in complex crops. We present DeepWheat, a broadly
applicable deep learning framework comprising DeepEXP and DeepEP, for accurate,
tissue-specific gene expression prediction. DeepEXP integrates sequence and epig-
enomic features to predict gene expression (PCC 0.82-0.88), while DeepEP!I predicts
epigenomic maps from DNA sequence to support model transfer across varieties.
Validations in five wheat cultivars confirm robustness and accuracy. DeepWheat

also identifies regulatory variants with strong expression effects, enabling targeted cis-
regulatory elements editing and offering a powerful tool for crop functional genomics
and breeding.

Background

Cis-regulatory elements (CREs) are pivotal in the precise regulation of gene expression
[1, 2], yet their functional impacts remain challenging to characterize [3, 4]. The applica-
tion of machine learning techniques has markedly advanced the prediction of regulatory
activities and their influence on epigenomic modifications and gene expression [5, 6].
These approaches have improved our ability to characterize CRE function and support
the development of trait-improving strategies [5, 7, 8].

Considerable progress has been achieved in model plants and certain crops, such
as Arabidopsis, rice and maize, a diverse array of computational and experimental
approaches has been developed and integrated by researchers to dissect the complexi-
ties of gene regulation and expression [6, 9]. These efforts have greatly enriched our
understanding of the regulatory mechanisms underpinning gene function and the
ways in which genetic variations influence phenotypic outcomes. By simulating virtual
mutations, these models are able to predict the effects of alterations within CREs, thus
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guiding the precise editing of these regions [10, 11]. However, progress in complex-
genome species, such as wheat, remains limited, due to the additional complexity intro-
duced by their unique genomic characteristics [12, 13].

The prediction accuracy of gene expression can be significantly improved by integrat-
ing 3D chromatin structures and epigenomic data, compared to models relying solely
on sequence-based information [14]. These findings are consistent with that epigenomic
modifications, such as DNA methylation and histone modifications, play a critical role
in regulating gene expression [15—17]. However, obtaining high-quality epigenomic data
remains expensive and challenging, particularly in plants, where data quality often lags
behind that of animal models or Arabidopsis [18].

Another challenge is the low prediction accuracy across tissues [14], largely due to the
similar overall expression patterns of most genes [19]. However, the spatiotemporal-spe-
cific expression of genes is crucial for the formation of key traits, for example, variations
in the expression pattern of the BRD3 gene lead to its tissue-specific expression in grain,
resulting in a multi-grain phenotype that significantly enhances rice yield [20]. There-
fore, accurate prediction of tissue-specific gene expression is urgently needed in the field
of crop improvement. Since epigenomic features are closely linked to tissue-specific
expression [21], their incorporation holds potential for enhancing the precise prediction
of tissue-specific genes [14]. However, this strategy has yet to be widely adopted in plant
species.

Wheat's large and complex genome, characterized by redundancy and structural vari-
ations [12, 22], presents significant challenges in accurately predicting gene expression
and regulatory activities across tissues, developmental stages, and genetic backgrounds,
making traditional sequence-based models less effective. To address these challenges, we
developed DeepWheat, comprising two models: DeepEXP and DeepEPI. DeepEXP inte-
grates epigenomic and transcriptomic data to predict gene expression in various wheat
tissues and stages using a deep learning framework, achieving Pearson correlation coef-
ficients (PCC) ranging from 0.82 to 0.88 and outperforming sequence-only models. Dee-
pEPI predicts epigenomic features from DNA sequences, which are then integrated with
sequence data to improve gene expression predictions. This integration allows the model
transfer and enhances prediction accuracy across wheat varieties. Our models also eval-
uate genetic variations, revealing that indels have a stronger impact on gene expression
than SNPs. Additionally, not only promoter regions but also the 5'UTR, 3’UTR, and
introns play critical roles in gene regulation. These advancements provide a comprehen-
sive toolkit for exploring gene regulation in wheat, with significant potential to enhance
breeding strategies and functional genomics in this vital crop species.

Results

Method outline

Gene expression varies substantially across wheat tissues and developmental stages [17],
yet most existing models predict expression based solely on genomic sequence, often
using median or peak expression across tissues [23, 24]. These approaches lack resolu-
tion for tissue- or stage-specific predictions. To address this limitation, we first trained
a model based on the Basenji2 [25, 26] framework to predict wheat gene expression

from sequence alone. Despite extensive tuning, prediction accuracy remained limited
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(PCC<0.66 across tissues), and dropped to 0.25 in vernalized leaves (Additional file 1:
Fig. S1A). Similarly, models built using the Xpresso [27] and PhytoExpr [23] frameworks
failed to achieve high-accuracy predictions across tissues and stages (Additional file 1:
Fig. S1A). Independent evaluation on 4700 randomly selected genes (Additional file 1:
Fig. S1B) further revealed large discrepancies between predicted and experimental tis-
sue-specificity indices (Additional file 1: Fig. S1C), suggesting poor performance in cap-
turing spatiotemporal dynamics.

Considering epigenomic modifications are highly relative with gene expression (Addi-
tional file 1: Fig. S1D and S1E) and the feasibility of predicting gene expression using epi-
genomic and methylation data in human [14], we developed DeepWheat, a deep learning
toolkit comprising two core modules: DeepEXP and DeepEPI (Fig. 1). DeepEXP inte-
grates genomic sequence and experimental epigenomic data (e.g., chromatin accessibil-
ity and histone modifications) across multiple wheat tissues and developmental stages
to predict tissue-specific gene expression. High-quality epigenomic profiles were first
reconstructed using AtacWorks [28]. Features from proximal regulatory regions and par-
tial genebodies were extracted using two parallel convolutional neural network (CNN)

branches, followed by channel-wise concatenation and deep residual learning blocks. A
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Fig. 1 Architecture and predictive framework of the DeepWheat. The DeepWheat suite comprises two
complementary deep-learning models, DeepEPl and DeepEXP, that together predict wheat epigenomic
modifications and gene expression. DeepEPl is built on the Basenji2 framework and accepts 131 kb
genomic sequences surrounding each locus; through stacked convolutional and residual blocks it outputs
genome-wide epigenomic signal tracks, including TIS (Tn5 transposome integration sites in ATAC-seq)

and various histone modifications, across multiple tissues and predicts the effects of SNPs and INDELs

on these marks. DeepEXP integrates DNA sequence windows flanking transcription start sites (TSSs) and
transcription termination sites (TTSs) with epigenomic feature vectors—either experimentally measured
or DeepEPI-predicted. Its architecture is defined by the number of convolutional filters (), sequence
length (/), number of residual layers (1) and number of fully connected neurons (n). DeepEXP subsequently
predicts gene expression levels across tissues, quantifies the impact of sequence variants on tissue-specific
expression, and, via attribution analysis, identifies both tissue-general and tissue-specific regulatory sequence
elements
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fully connected regression head outputs non-negative, continuous gene expression val-
ues (Fig. 1, Methods).

DeepEPI is an optimized version of the Basenji2 [25, 26] architecture, trained to pre-
dict tissue- and stage-specific chromatin accessibility and histone modification profiles
directly from DNA sequence. Given the high cost of generating experimental epig-
enomic datasets, we further designed a transfer strategy: DeepEPI-predicted regulatory
features are combined with sequence and fed into DeepEXP to predict gene expression
in a purely in silico setting, without requiring experimental epigenomic input (Fig. 1).

Together, DeepEXP and DeepEPI enable high-resolution, cross-tissue prediction
of gene expression and regulatory activity in wheat. We further developed an analy-
sis pipeline to perform attribution analysis, identify variants with strong influence on
gene expression, and assess the effects of genomic variants on gene expression and epig-
enomic states across tissues and developmental stages (Fig. 1), providing a valuable tool
for functional variant interpretation and CRE editing.

Integrating sequence and epigenomic data improves tissue-specific gene expression
prediction in wheat

DeepEXP, a deep learning model that integrates genomic sequences and multi-omic
epigenomic data, was developed to accurately predict gene expression across wheat
tissues and developmental stages (Fig. 1). To identify the optimal length of proximal
regulatory sequences, we first tested different intervals of sequences and epigenomic
features around the transcription start site (TSS) as model inputs. The optimal region
was 2000 bp upstream and 1500 bp downstream of the TSS, which yielded improved
PCC and R? across six tissues (Fig. 2A, Additional file 2: Table S1A). Subsequently, with
the TSS region fixed, we incorporated sequences and epigenomic maps within 500 bp
upstream and 200 bp downstream of the transcription termination site (TTS). This
addition further improved prediction accuracy, as validated in spike and vernalization
stages (Fig. 2B, Additional file 2: Table S1B). Training on sequences and epigenomic data
from 2000 bp upstream to 1500 bp downstream of TSS and 500 bp upstream to 200 bp
downstream of TTS, DeepEXP achieved PCC values between 0.82 and 0.88, outper-
forming sequence-only models such as Basenji2 [25, 26], Xpresso [27], and PhytoExpr
[23] (Fig. 2C). Notably, DeepEXP also surpassed these models in Arabidopsis, rice, and
maize, demonstrating its broader applicability (Fig. 2D and Additional file 2: Table S2).

To assess tissue-specific predictive performance, we selected 1543 genes with high
tissue specificity (tissue specificity index, Tau>0.8) from the independent test set of
4,700 genes (Additional file 1: Fig. S1B). Sequence-only models exhibited a notable drop
in performance for these genes, whereas DeepEXP showed only a minor reduction
across all tissues (Fig. 2E, Additional file 1: Fig. S1C and S1F), highlighting the critical
role of epigenomic features in capturing tissue-specific expression. A similar trend was
observed in the prediction of expression levels for cloned genes in spike and leaf tissues
(Additional file 1: Fig. S1G).

To assess the contributions of different epigenomic modifications, we integrated
individual modification data to predict gene expression. Chromatin accessibility
data had the highest contribution in most tissues, while H3K27me3 had the least,
with other modifications in between (Additional file 1: Fig. STH). We then evaluated
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Fig. 2 Training of the DeepEXP gene expression prediction model using DNA sequence and epigenomic
data. A-B Prediction performance using different length regions around TSS (A) and TTS (B). For TTS length
performance inspection, the best length of TSS regions were used. Pearson correlation coefficient (PCC)

and R? values of DeepEXP on testing datasets using sequence and epigenomic data from varying lengths of
regions surrounding the TSS and TTS across different tissues. C PCC and R? values between experimental and
predicted gene expression levels on the independent test set. Each dot indicated the value for prediction

in one tissue. Two asterisks indicate p <0.01 in Wilcoxon rank-sum test. D PCC between experimental and
predicted gene expression levels on independent test sets across different tissues of Arabidopsis, rice

and maize. CIM7d, 7-day callus induction medium; SIM8d, 8-day shoot induction medium. E Frequency
distribution histograms illustrating the tissue specificity index (Tau) of predicted gene expression for 4700
genes in the independent test set. Predictions are shown for Basenji2, Xpresso, PhytoExpr and DeepEXP, and
experimentally measured gene expression as a reference. Tau values range from 0 to 1, with values closer to
1 indicating stronger tissue-specific expression. All histograms share the same axis range and bin size (100
equally spaced bins). F PCC between experimental and predicted gene expression levels on independent
test sets across multiple wheat tissues using DeepEXP, by integrating sequence with either one individual
epigenomic feature or multiple epigenomic features. TIS indicates Tn5 transposome integration sites in
ATAC-seq. G PCC between experimentally measured and predicted gene expression levels in spike and leaf
tissues. Comparisons include models trained with different input types: those integrating epigenomic data
from multiple tissues and developmental stages along with sequence information, and the sequence-only
Basenji2 model

DeepEXP using only sequence plus single epigenomic data. Even with the addi-
tion of a single epigenomic data, model performance improved significantly over
sequence-only inputs (Fig. 2F). We also find prediction accuracy varied across tis-
sues and stages. Quality analysis of epigenomic data revealed moderate correlations
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between data quality and prediction accuracy (Additional file 1: Fig. S1I), indicating
that data quality significantly impacts accuracy. To further enhance prediction accu-
racy by improving the quality of epigenomic data, we employed Atac Works [28], a
deep learning model for refining epigenomic tracks. This approach increases predic-
tion accuracy and robustness, especially for low-quality samples (Additional file 1:
Fig. S1J).

Recognizing the high cost and limited availability of multi-tissue epigenomic data, we
further tested transferability across tissues: using chromatin data from one tissue to pre-
dict gene expression in another still outperformed sequence-only models, particularly
when the donor and target tissues were developmentally similar (Fig. 2G). We hypoth-
esize that sequence-only models capture static features like motif presence but fail to
reflect dynamic chromatin states essential for gene regulation. By incorporating epig-
enomic signals-even from non-matching tissues—DeepEXP effectively filters out inac-
tive regions and models complex sequence—chromatin interactions, thereby enhancing
tissue-specific prediction accuracy.

Optimizing multi-tissue epigenetic profiling and sequence integration for improved gene
expression prediction in wheat

Since integrating sequences with epigenomic maps improves gene expression predic-
tion accuracy and obtaining epigenomic data is more costly than gene expression data
[29, 30], we intend to necessitate a model to predict epigenomic features and integrated
these predicted features and sequences to predict gene expressions (Fig. 1). We speculate
that this approach will facilitate the transfer of the prediction model to different wheat
varieties.

We developed DeepEPI to predict wheat epigenomics using multi-tissue (stage) epig-
enomic data, optimizing the Basenji2 [25, 26] framework (Fig. 1). On an independent test
set, the PCC between predicted and experimental chromatin accessibility and histone
modifications ranged from 0.65 to 0.79 and 0.30 to 0.80, respectively (Fig. 3A and Addi-
tional file 2: Table S3). The PCC for peak predictions ranged from 0.83 to 0.94 and 0.69
to 0.96 (Fig. 3B and Additional file 2: Table S3). Predicted and experimental epigenomic
distributions showed high consistency (Fig. 3C), and the data quality was strongly cor-
related (Additional file 1: Fig. S2A—2C). These models also identified distal accessible
chromatin regions (Fig. 3D), which could be used to discover putative enhancers.

We integrated sequence data with epigenomic features predicted by DeepEPI to
predict gene expression (Fig. 1). The PCC between predicted and experimental values
ranged from 0.71 to 0.74 across different tissues and stages (Fig. 3E). Although this accu-
racy was lower than that achieved using combined sequence and experimental epig-
enomic data, it was significantly higher than using sequence data alone (Fig. 3E). The
frequency distribution of predicted gene expression specificity closely matches experi-
mental values (Fig. 3F), outperforming sequence-only models. We further transferred
this strategy to the Chinese Spring wheat variety and still achieved higher prediction
accuracy compared to sequence-only models (Additional file 2: Table S4). Further analy-
sis of tissue-specific genes (Tau>0.8) [31] between spike, leaf and vernalized leaf tissues
showed that integrating sequences with predicted epigenomic features enhanced predic-
tion accuracy for tissue-specific gene expression (Additional file 1: Fig. S2D).
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Fig. 3 Integration of DeepEPl and DeepEXP to optimize DNA sequence-based gene expression prediction
model. A-B PCC and R? values for DeepEPI's prediction of various epigenomic marks, with A showing
predictions based on track signals and B showing predictions based on modified coordinates. DAP, days after
pollination. TIS indicates Tn5 transposome integration sites in ATAC-seq. C IGV screenshot showing predicted
and experimental signals for various epigenomic modifications across different tissues. D Visualization

of predicted putative distal regulatory regions through DeepEPI. E PCC and R? values of gene expression
prediction using the DeepEPI 4+ DeepEXP model (sequence + predicted epigenomic data, Seq+ pEpi),
compared with models based on sequence data alone (Seq) and sequence + experimental epigenomic data
(Seq + Epi). Statistical significance between the two groups was tested using the Wilcoxon rank-sum test
(*p<0.05; **p<0.01; ***p <0.001; ns=not significant) F Gene's Tau distribution derived from experimental
data and DeepEXP predictions using sequence data alone (Seq), sequence 4 experimental epigenomic data
(Seq+ Epi), and sequence + predicted epigenomic data (Seq + pEpi)

Validation of DeepWheat prediction accuracy across 5 wheat varieties

To validate the across varieties prediction accuracy of DeepWheat, we generated chro-
matin accessibility and transcriptomic data from 5 additional wheat varieties (Fig. 4A).
In young spike, accessible chromatin regions (ACRs) differing from the AK58 cultivar
accounted for 6.31% to 38.4% of the total ACRs (Additional file 1: Fig. S3A), in young
spike tissues the number of differentially expressed genes compared to AK58 ranged
from 8455 to 11,535 (Additional file 1: Fig. S3B). These variations indicated that the sam-
ples were suitable for evaluating model accuracy.

To predict the epigenetic landscape and gene expression levels across different wheat
varieties, we employed the strategy outlined in Fig. 4B (Methods). We selected differen-
tially expressed genes with high-quality INDELs/SNPs located within 2000 bp upstream
and 1500 bp downstream of the TSS, as well as 500 bp upstream and 200 bp downstream
of the TTS. A total of 4638 and 5145 genes were selected from spike and leaf tissues
across 5 varieties, with an average of 7400 and 6193 INDELs, and 38,411 and 38,051
SNPs, respectively, between AK58 and each variety for spike and leaf tissues. A pseudo-
genome centered on the selected genes was generated by modifying the AK58 reference
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Fig. 4 Validation of the prediction accuracy of DeepEPI, DeepEXP, and DeepEPI 4 DeepEXP models in
different wheat varieties. A Phylogenetic relationships of AK58 and the other 5 selected wheat cultivars. B
Pipeline for predicting epigenomic modifications and gene expression across wheat cultivars. Epigenomic
modification maps and gene expression predictions can be generated for different varieties by inputting
SNPs/INDELs. TIS indicates Tn5 transposase integration sites in ATAC-seq. C Visualization of predicted and
experimental chromatin accessibility signals in spike tissues across different wheat varieties. D PCC of spike
chromatin accessibility predictions by DeepEPI, evaluated across various wheat cultivars and AK58. E PCC
and R? of spike gene expression predictions with sequence + predicted epigenomic data (Seq + pEpi) as
input, compared the differentially expressed genes between AK58 and other cultivars. F-G PCC of gene
expression predictions for various cultivars using sequence (Seq) and sequence + predicted epigenomic
data (Seq+ pEpi) as input, for spike and leaf tissues, respectively. The statistical significance of the differences
in prediction performance (measured by PCC values) between groups and were calculated using the
Wilcoxon rank-sum test. H-1 Scatter plots comparing experimental expression and predicted expression
using sequence + predicted epigenomic data (Seq + pEpi, left panel) and sequence only (Seq, right panel) in
Zhongmai113 spike (H) and leaf tissues (1), respectively

sequence based on these INDEL/SNPs. Predicted epigenomic features were generated
with DeepEPI (Fig. 4C) and integrated with DNA sequences to predict gene expression.
The PCC between experimental and predicted values in spike chromatin accessibility
was only 0.01-0.05 lower than that of Aikang58 (Fig. 4D), with prediction accuracy for
differentially expressed genes ranging from 0.62 to 0.77 in spike and 0.50 to 0.71 in leaf
tissues (Fig. 4E).

We also tested the sequence only model’s (using Basenji as an example) efficiency
across 5 other wheat varieties, which showed that gene expression prediction accuracy
was much lower than the DeepWheat models (Fig. 4F and G). And the scatter plot fur-
ther demonstrated that predicted gene expression accuracies were significantly better
than those based on sequence-only models (Fig. 4H and I).

To assess the model’s robustness to structural variation (SV) and copy number vari-
ation (CNV), we transferred DeepWheat to Chinese Spring and used published SV/
CNV [32] datasets to divide test genes into two groups: those overlapping with SV/CNV
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regions within the proximal regulatory sequence (2 kb—gene body-200 bp), and those
without overlap. Despite the presence of structural variation, DeepWheat performance
showed only a slight, non-significant decrease in PCC (APCC = — 0.078 in spike, —0.018
in leaf; Wilcoxon rank-sum test, no significance; Additional file 1: Fig. S3C), suggesting
the model can tolerate regulatory sequence variation and learn SV/CNV-related fea-
tures. These results not only highlight DeepWheat’s ability to predict epigenetic modifi-
cations and gene expression across different wheat varieties, but also validate its capacity

to accurately predict the effects of SNPs on gene expression.

Prediction of variant effects on regulatory sequence activity and gene expression using
DeepWheat
Cis-regulatory elements (CREs), primarily located in non-coding regions, are challeng-
ing to evaluate their regulatory effects [33]. Through attribution analysis, DeepWheat
can identify the nucleotide bases that have the greatest impact on gene expression (Addi-
tional file 1: Fig. S4A), which is crucial for elucidating the effects of genetic variants and
uncovering key regulatory sites involved in gene expression (details in the “Methods”
section). To assess the effects of SNPs/INDELs within a 2000 bp upstream to 1500 bp
downstream of TSS, and 500 bp upstream to 200 bp downstream of TTS window, we
transferred the model across different wheat varieties and compared the predicted gene
expression levels with the observed expression of genes that have SNPs/INDELs within
the aforementioned windows and exhibit differential expression compared to AK58. The
effect value was defined as:

Effect value = (predicted expression for each SNP/INDEL — predicted expression of
AK58)/(predicted expression for all SNPs/INDELs — predicted expression of AK58).

Most SNP effects ranged from —1 to 1, with few outliers (Additional file 1: Fig. S4B
and S4C). Among SNPs with effects unequal to 0, 75-85% showed significant effects,
compared to 85-95% of INDELs (Additional file 1: Fig. S4D and S4E). Notably, the effect
of INDELS is significantly greater than that of SNPs (Fig. 5A). Based on published spike
and leaf eQTL data in wheat [34], we found that approximately 10% of the reported
cis-eQTLs overlapped with the predicted effective regulatory variants (|effects|>0) in
both spike and leaf tissues (Fisher’s exact test, p<0.001) (Fig. 5B), indicating significant
enrichment. And the predicted regulatory effect sizes of cis-eQTL SNPs were signifi-
cantly higher than those of randomly selected SNPs (Fig. 5C), supporting the biologi-
cal relevance and interpretability of our model’s predictions. Further analysis revealed
that effective SNPs and INDELs were predominantly enriched in promoters, followed
by introns, exons, downstream regions, 3° UTR, and 5" UTR (Fig. 5D). Interestingly,
stronger regulatory effects were observed not only in promoter regions but also in the 5
UTR, 3" UTR, and introns, underscoring their critical roles in modulating gene expres-
sion (Fig. 5E and Additional file 1: Fig. S4F) [35, 36]. We also found that missense SNPs
had a greater effect than synonymous mutations, which may be linked not only to gene
expression but also RNA stability (Additional file 1: Fig. S4G) [37]. The strong effects
observed in gene bodies suggest that DeepWheat can also be applied to the abundant
WES (Whole Exome Sequencing) data in wheat to identify expression-associated vari-
ants [38].
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blue). Boxes represent the median and interquartile range, and dots indicate outliers. Statistical significance
between the two groups was tested using the Wilcoxon rank-sum test (*p <0.05; **p < 0.01; ***p <0.001;
ns=not significant). D Percentage of effective (|effect|>0) SNPs/INDELs in different genomic regions. E Effects
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(REN) as an internal control. RE, predicted regulatory element. Data are presented as mean £ SEM, and
statistical significance was determined by the Wilcoxon rank-sum test (*p <0.05; **p <0.01; **p < 0.001; ns,

not significant)

Large-scale CRE editing studies, which evaluate the impact of each variant, remain
a significant challenge in crops. To assess whether DeepWheat can guide CRE editing,
we first evaluated the regulatory activity and gene expression changes of a known CRE
associated with the drought-responsive gene TuSNAC8-6A. The TaABFs transcrip-
tion factors can target a favorable allele, TaSNACS8-6A™7313 within an inserted ABRE
promoter motif (where C is replaced by CGTA), enhancing 7aSNAC8-6A expression
in drought-resistant genotypes [39]. When this variant was input into DeepWheat,
the predictions indicated the formation of a regulatory motif that boosts the activity
of regulatory elements and enhances gene expression (Fig. 5F). To further assess the
broader applicability of DeepWheat in guiding CRE editing, we performed saturation
mutagenesis on the upstream promoter regions of two differentially expressed genes,

Page 10 of 19
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TraesAKS8CH3B01G284500 and TraesAK58CH6B01G231000 (Additional file 1: Fig.
S4H and S41). DeepWheat predictions suggested that mutations at G-A and T-C sites
could alter chromatin status and enhance gene expression, respectively, luciferase
reporter assays confirmed that these mutations indeed increased the expression of
both genes (Fig. 5G and H).

Discussion

Accurate gene expression prediction is a powerful tool for evaluating SNP/INDEL func-
tions and guiding CRE editing [40]. Our study advances gene expression and regulatory
sequence prediction in wheat, a species with a complex genome that has long posed
challenges for genomic research. Through the development of the DeepWheat suite,
which includes the DeepEXP and DeepEPI models, we have overcome many limitations
of sequence-based prediction approaches.

Spatiotemporal-specific gene expression is of fundamental importance in the develop-
ment of superior traits [41, 42]. Precise modulation of tissue-specific gene expression
is imperative for gene editing in the creation of elite materials [43—45]. DeepEXP inte-
grates diverse epigenomic and transcriptomic datasets, achieving impressive predic-
tive performance with PCC over 0.82 across various tissues and developmental stages,
notably outperforming sequence-only models. While models like DeepEPI excel in pre-
dicting epigenomic features, the strategy employed by DeepWheat further enhances pre-
diction accuracy across different cultivars by integrating sequence data with epigenomic
features inferred by DeepEPI. Overall, these integrative models have markedly improved
the precision of gene expression predictions, providing a more robust tool for elucidat-
ing gene regulatory mechanisms.

In addition to gene expression prediction, DeepWheat models offer several key func-
tions for functional genomic studies and crop improvement. These include identifying
regulatory sequences, assessing the impact of sequence variations on regulatory activ-
ity and gene expression, and performing saturation mutagenesis to identify high-effect
sites. These capabilities deepen our understanding of how genetic variations affect regu-
latory networks and phenotypic traits [46, 47]. Furthermore, by predicting the regula-
tory effects of noncoding variants across tissues, DeepWheat provides a useful tool for
prioritizing candidate mutations beyond coding regions. Virtual mutagenesis based on
DeepWheat can simulate regulatory edits in silico, reducing experimental workload and
guiding precise genome editing designs. These features support the development of new
phenotypes and efficient breeding strategies through targeted regulatory interventions.

While generating high-quality epigenomic data (e.g., ATAC-seq or ChIP-seq) is more
costly than transcriptomic profiling, we found that even single-tissue epigenomic pro-
files, when integrated with sequence features, substantially improved prediction accu-
racy compared to sequence-only models. Cross-tissue applications resulted in a modest
performance decline, yet still outperformed sequence-only baselines, particularly when
the tissues were closely related. Notably, DeepWheat demonstrated strong generalizabil-
ity across multiple wheat varieties, including those lacking reference-quality genomes.
Nevertheless, for optimal accuracy, retraining or fine-tuning on tissue-specific data
remains advisable.
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Conclusions

Future work should focus on expanding the epigenomic datasets used for training these
models, incorporating data from a broader range of wheat varieties and environmental
conditions. Additionally, integrating 3D chromatin structure data could further enhance
prediction accuracy and provide insights into the spatial organization of regulatory ele-
ments [48, 49].

These efforts will be essential for refining predictive models and enhancing their appli-
cability across different genetic backgrounds and environmental conditions. Overall,
DeepWheat provides a versatile framework for predicting gene expression and regula-
tory activity, prioritizing candidate mutations, and guiding precision genome editing,
offering promising applications in wheat functional genomics and breeding.

Methods

ATAC-seq, ChIP-seq, and RNA-seq

ATAC-seq

ATAC-seq was performed as previously described with minor modifications [50].
Briefly, 1-2 g of flash-frozen wheat tissue (7 days seedlings and 1-2 cm young spike) was
minced in 1 mL of ice-cold lysis buffer (15 mM Tris—HC]l, pH 7.5; 20 mM NaCl; 80 mM
KCl; 0.5 mM spermine; 5 mM 2-mercaptoethanol; 0.2% Triton X-100). The crude nuclei
extract was filtered twice through a 40 pm filter, stained with DAPI (Sigma, D9542), and
sorted using a BD FACSCanto flow cytometer. Nuclei were pelleted by centrifugation,
washed with Tris-Mg buffer (10 mM Tris—HC], pH 8.0; 5 mM MgCl,), and incubated
with 3.5 pL Tn5 transposomes in 40 pL TTBL buffer (TruePrep DNA Library Prep Kit
V2, Vazyme, TD501) at 37 °C for 30 min. The DNA integration products were purified
using the NEB Monarch™ DNA Cleanup Kit (T1030S) and amplified for 10-13 PCR
cycles using NEBNext Ultra II Q5 Master Mix (M0544L). Amplified libraries were puri-
fied with Hieff NGS® DNA Selection Beads (Yeasen, 12601ES03).

ChiP-seq

ChIP-seq experiments were conducted following established protocols [51], using anti-
bodies specific for H3K27ac (Abclonal, A7253), H3K27me3 (Abcam, ab6002), H3K4me3
(Millipore, 07-473), and H3K36me3 (Abcam, ab9050). Library preparation was per-
formed with the TransGen Biotech Kit (KP201-02), The libraries were sequenced on the
[lumina NovaSeq 6000 platform, generating 150 bp paired-end reads.

RNA-seq

Wheat samples were flash-frozen in liquid nitrogen, and total RNA was extracted using
TRIzol™ Reagent (Invitrogen, 15,596—026) according to the manufacturer’s instructions.
RNA-seq libraries were prepared by Berry Genomics (Beijing, China) and sequenced on
the Illumina NovaSeq 6000 platform, generating 150 bp paired-end reads.

ATAC-seq, ChIP-seq, and RNA-seq data analysis

ATAC-seq data processing

Raw sequencing reads were subjected to quality control using fastp v0.21.0 [52]. High-
quality reads were then aligned to the wheat reference genome using Bowtie2 v2.3.5
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[53] with parameters -X 1000 and —very-sensitive. The resulting alignments were sorted
and filtered (MAPQ>10) using SAMtools v1.3.1 [54]. Clonal duplicates were removed
with Picard v2.16.0 (http://broadinstitute.github.io/picard/). Peak calling was performed
using MACS2 v2.2.6 [55] with the following parameters: —keep-dup all —nomodel —ext-
size 150 —shift —75. Differential peaks were found using MACS2 v2.2.6 [55] with the fol-
lowing parameters: bdgdiff —d1 60 —d2 120 -c 3.

ChiP-seq data processing

Raw sequencing reads underwent quality control with fastp v0.21.0 [52]. Filtered reads
were aligned to the wheat reference genome using Bowtie2 v2.3.5 [53] with parameters
-X 1000 and —very-sensitive. Aligned reads were sorted and filtered (MAPQ >10) using
SAMtools v1.3.1 [54], and clonal duplicates were removed using Picard v2.16.0 (http://
broadinstitute.github.io/picard/). Peaks were identified using MACS2 v2.2.6 [55] with
the parameters —keep-dup all —-nomodel —extsize 150 —shift —75. Differential peaks
were found using MACS2 v2.2.6 with the following parameters: bdgdiff —d1 60 —d2 120
-c3.

RNA-seq data processing

Quality control of raw reads was conducted using fastp v0.21.0 [52]. Clean reads were
aligned to the wheat reference genome using HISAT2 (https://daehwankimlab.github.
io/hisat2/) with default settings. Sorted BAM files were generated using SAMtools
v1.3.1 [54], and read quantification was performed using featureCounts [56]. Transcripts
Per Million values (TPM) were calculated using TPMCalculator [57]. Differentially
expressed genes (DEGs) were identified using DESeq2 [58], with significance thresholds
set at p-value <0.01 and fold change > 2.

DeepEXP architecture and training

Model input and output

The model takes as input DNA sequences flanking the transcription start site (TSS) and
transcription termination site (TTS) of genes, along with various epigenomic modifica-
tion signals. The output is the gene expression level, represented by loglp (TPM). To
ensure model reliability, the epigenomic and gene expression data are derived from the
same tissue sample batch. DNA sequences are encoded using one-hot encoding, result-
ing in an L x 4 matrix, where L represents the sequence length. Epigenomic data, includ-
ing accessible chromatin regions and peaks with histone modifications identified by
MACS2 [55] (https://github.com/macs3-project/ MACS) and BEDTools [59] were used;
if an interval falls within an ACR or peaks, it will be assigned a modified coordinates
value, or zero otherwise. The data are then normalized to fall within the range of 0 to 1.

Model architecture

DeepEXP employs a multi-branch architecture where epigenomic and DNA
sequence data are processed independently through convolutional layers and pooled
before concatenation along the channel dimension (Fig. 1). The epigenomic branch
reshapes the input into a 4D tensor, applies two convolutional layers with kernel
sizes (kernel_size, 5) and (kernel_size, 1), and concludes with batch normalization
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(BN), ReLU activation, dropout, and average pooling. Similarly, the DNA sequence
branch uses convolutional layers with kernel sizes (kernel_size, sequence_input_
data.shape) and (kernel_size, 1), followed by identical normalization and pooling
steps. The extracted features are concatenated and passed through r residual mod-
ules, each containing two convolutional layers with kernel size (res_block_kernel
size, res_block_kernel_size), and employing skip connections to preserve lower-level
features while extracting higher-dimensional representations. Flattened concate-
nated features are fed into three fully connected layers with 256, 64, and 16 neurons,
respectively, each equipped with BN, ReLU activation, and dropout, and finally a
single-neuron output layer predicts gene expression values. The model uses Optuna
(https://optuna.org/) for hyperparameter optimization, tuning learning rate, kernel
sizes, filter numbers, residual block configurations, L2 regularization, and dropout
rates, with the objective to maximize R? on the validation set. Training is performed
using the Adam optimizer with dynamically adjusted learning rates, and early stop-
ping (patience =40) and model checkpointing are employed to save the best weights.
The model’s performance is evaluated on the test set using R? and Pearson correla-
tion coefficients (PCC), demonstrating its ability to effectively integrate epigenomic
and DNA sequence data for accurate gene expression prediction.

Model training For each dataset corresponding to a specific tissue or developmental
stage, the data is randomly shuffled and divided into training (60%), validation (20%),
and test (20%) sets. To achieve optimal predictive performance, Optuna (https://
optuna.org/) is utilized to perform hyperparameter optimization and training for
each tissue and time point individually, leveraging an NVIDIA RTX 4090 GPU. The
detailed code for the model architecture and training process can be accessed in the
following repository: https://github.com/WheatEpigenomics/DeepWheat.

DeepEPI model analysis

The DeepEPI model is based on the previously published epigenetic and transcrip-
tomic prediction framework, Basenji2 [25, 26], as shown in Fig. 1. For input prepara-
tion, epigenomic data in BigWig format were generated using the bam_cov.py script
and processed with the basenji_data.py script. To ensure valid sampling intervals,
genomic regions with gaps larger than 10 bp were annotated in the wheat AK58 ref-
erence genome.

The epigenomic data used in this study include ATAC-seq and four types of his-
tone modifications data from six tissues and developmental stages. We trained sepa-
rate models for ATAC-seq and histone modification data using basenji_train.py. The
training set comprised 70% of the total samples, while the validation and test sets
made up 15% each. Due to limited computational resources (using an NVIDIA RTX
3090 for model training), we referred to hyperparameters from previously published
high-precision human epigenomic prediction models based on Basenji2 [25, 26] and
adjusted these parameters accordingly. Testing was conducted on an independent
test set using the basenji_test.py script, with the optimal hyperparameter configura-
tion available at https://github.com/WheatEpigenomics/DeepWheat.
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Comparison with other methods

Gene expression prediction using Basenji2

Initially, we trained a model to predict gene expression profiles using the Basenji2 [25,
26] framework. Subsequently, we used BEDTools [59] to intersect the gene annota-
tion files from the high-quality AK58 dataset with the independent test set to obtain
the gene expression profiles for the test set. The gene expression profiles were then
converted into BAM files, similar to RNA-seq data, using BEDTools [59] and SAM-
tools [54]. TPM values were calculated using TPMCalculator [57]. Finally, we evalu-
ated the model’s accuracy by calculating the R? and Pearson correlation coefficient
(PCC) between the experimental and predicted gene expression values.

Gene expression prediction with Xpresso and PhytoExpr

Scripts and model definitions for Xpresso [27] were obtained from the authors’
GitHub repository, and the PhytoExpr code was downloaded from the Zenodo
archive. Each model was re-trained using the default hyperparameters recommended
in its original publication on multi-tissue gene expression datasets from four plant
species: wheat (Triticum aestivum), Arabidopsis thaliana, rice (Oryza sativa), and
maize (Zea mays). Input features and preprocessing strictly followed the published
pipelines: Xpresso [27] leveraged promoter-based and sequence-derived features,
while PhytoExpr used sequence and GC-content features. Models were trained inde-
pendently for each species with their recommended learning rates, batch sizes, and
regularization settings, and early stopping based on validation loss was applied to
prevent overfitting. Finally, predictive performance was evaluated on held-out test
sets for each species by calculating Pearson’s correlation coefficient (PCC) and coef-
ficient of determination (R?) between predicted and observed expression levels.

Gene expression prediction by combination of DeepEPI and DeepEXP

The DeepEPI model takes input DNA sequences of length 131,072 bp (based on the
reference genome sequence and input BED files). If the submitted BED interval is
shorter than 131,072 bp, it is expanded symmetrically to 131,072 bp. This allows for
the generation of various epigenomic profiles within the interval. These epigenomic
profiles, along with the sequences of the target regions upstream and downstream of
gene TSS and TTS, are then input into the DeepEXP model to obtain the predicted

gene expression values.

Epigenomic profiling and gene expression prediction across different wheat varieties

For different wheat varieties, high-quality VCF files and the AK58 reference genome
sequence were used with g2gtools v0.2 (https://github.com/churchill-lab/g2gtools/)
to generate pseudo-reference genome sequences for each variety. These pseudo-ref-
erence sequences, along with the BED files of the target prediction regions, were then
used as inputs for DeepEPI to obtain the epigenomic profiles of the target prediction
regions in different varieties. To predict gene expression, the epigenomic profiles and
sequences from the target regions upstream and downstream of the gene TSS and
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TTS are input into DeepEXP. This allows for the prediction of gene expression levels
for the target genes across different wheat varieties.

Epigenomic profiling and gene expression prediction for a single gene

For single-gene analysis, users provide the gene ID list to DeepEXP. The script “pre-
dict_gene_expression-1G_analysis.py” predicts gene expression levels and identifies key
sequence or epigenomic regions contributing to expression using integrated gradients
attribution (default 100 steps: python predict_gene_expression-IG_analysis.py —seq
gene.seq.tsv —epi_dir epigenomic_data —predict_list predict_gene.list —attrib_list AA_
gene.list —-model_dir model —out_pred pred_results —out_ig IG_results —ig_steps 100).
Inputs include sequence files (gene.seq.tsv), multi-tissue epigenomic data (epi_dir), pre-
diction and attribution gene lists, and trained models.

Epigenomic profiling and gene expression prediction in incompletely annotated genomes
For cases where the reference genome annotation is incomplete, we provide the “incom-
pletely_annotated_genome_prediction” module. Users supply the target DNA sequences
in FASTA format along with corresponding relative gene position information in BED
format. These inputs are fed into the DeepEPI model to predict epigenomic modifica-
tions within the specified regions. Additionally, DeepEPT’s in silico saturation mutagene-
sis function enables assessment of the impact of variants on epigenomic features in these
regions. Subsequently, the DeepEXP model can be used to predict gene expression levels
and evaluate the contribution of proximal regulatory regions to gene expression.

Assessment of variant effects on regulatory sequence activity and gene expression
through saturation mutagenesis analysis

DeepEPI, based on Basenji2 [25, 26], is used to assess the impact of variants on epig-
enomic modifications. To evaluate variant effects, we input VCF files containing vari-
ants into DeepEPI. The Basenji_sad.py script predicts the epigenomic signals for both
reference and variant-containing sequences, with the difference representing the vari-
ant effect. Given that different epigenomic modifications are linked with regulatory
sequence activity [60, 61], the magnitude of the variant effect can provide insights into
its impact on regulatory sequence activity.

For scoring the impact of variants on gene expression, we input the epigenomic pro-
files and sequences of both reference and variant sequences into DeepEXP. The differ-
ence in gene expression levels between these sequences provides the variant’s effect
score on gene expression. When performing saturation mutagenesis analysis of regu-
latory sequences, we use BED files or VCF files containing the regulatory intervals.
By calculating and plotting the differences between reference and variant signals pre-
dicted by DeepEPI at each site, we generate a heatmap of variant effects from saturation

mutagenesis.
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