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Crop disease presents significant threats to global food 
security and agricultural sustainability. Traditional 

monitoring methods, reliant on visual inspections and 
laboratory analyses, are labor intensive and unsuitable 
for large-scale implementation. Hyperspectral remote 
sensing has emerged as a promising tool for operational 
crop disease monitoring. Here, we provide a broad re-
view, starting with a hyperspectral-based description of 
observable symptoms of common crop disease and then 
examining hyperspectral features, including spectral 
and textural features, pigment light absorption, solar-
induced chlorophyll f luorescence (SIF), temporal infor-
mation, and auxiliary data. We also analyze the algo-
rithms used for disease detection, including traditional 
statistical methods, machine learning (ML)-based meth-
ods, and physically based methods. The review high-
lights the effectiveness of these methods in distinguish-
ing various stressors, detecting early disease, assessing 
crop resistance, and monitoring large-scale disease. 
Additionally, we present two case studies of uncrewed 

aerial vehicle (UAV)-based hyperspectral imaging for 
maize leaf spot monitoring. Based on a quantitative lit-
erature review, we summarize current research trends. 
Future research should emphasize integrating physical 
models with deep learning (DL), ensuring the sensitiv-
ity and robustness of spectral features and promoting 
international data sharing.

INTRODUCTION
Crop disease causes substantial economic damage glob-
ally, posing a serious risk to food security and agricultural 
sustainability [1]. In large-scale farming, preventing disease 
spread is crucial as curative treatments are often economi-
cally and logistically unfeasible once outbreaks become 
widespread [2]. Early detection and timely intervention are 
therefore essential. Conventional methods for monitoring 
crop disease primarily rely on in situ visual inspections. 
This process requires several professionals, which is subjec-
tive, time consuming, and labor intensive. Remote sensing 
is a promising tool for monitoring disease because it offers 
an objective, rapid, and nondestructive means of collecting 
data from leaf to global scale [3].Digital Object Identifier 10.1109/MGRS.2025.3603640
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Hyperspectral remote sensing, a subset of remote sens-
ing technologies, offers high spectral resolution and has 
rapidly evolved into an effective tool for agricultural re-
search [4]. The hyperspectral sensors can collect a distinct 
spectral signature for each captured target at high spectral 
resolutions <2.5 nm, consisting of reflectance measure-
ments in hundreds of contiguous wavelength channels [5]. 
It is noted that a few commercial handheld systems even 
achieve resolutions below 1 nm. Narrow wavebands of hy-
perspectral sensing systems explain their widespread use in 
phenotyping [6], [7]. This unique property of hyperspectral 
remote sensing allows for high sensitivity to subtle crop 
changes caused by disease. For instance, this technique has 
been widely used to monitor sugar beet root rot [8], sugar 
beet leaf spot [9], potato bacterial blight [10], and wheat yel-
low rust [11], [12].

As hyperspectral sensors and data analysis methods for 
crop disease monitoring have developed, numerous studies 
have reviewed advancements in this field from various per-
spectives. Mahlein et al. [13] first explored the factors that 
make hyperspectral sensors more favorable for detecting 
crop disease than other sensors. Zhang et al. [14] provided 
a workflow for using hyperspectral technologies in analyz-
ing crop disease. Terentev et al. [15] analyzed the current 
state of hyperspectral remote sensing for early detection of 
crop disease in four types of crops, including oil palm, cit-
rus crops, the Solanaceae (nightshade) family, and wheat. 
Paux et al. [16] focused on identifying candidate genes that 
could be further characterized to identify relevant alleles 
for breeding programs. Zhu et al. [17] highlighted the trans-
formative potential of UAV-based remote sensing and DL 
in crop disease and pest management. These studies have 
made important contributions, but they lack a clear frame-
work for identifying disease-related hyperspectral features 
and practical case studies.

This review explores the capabilities of hyperspectral 
remote sensing features for crop disease monitoring and 
proposes a structured approach for selecting hyperspectral 
features sensitive to crop disease. Additionally, we present 
two case studies of UAV-based hyperspectral imaging in 
maize leaf spot monitoring to demonstrate the potential of 
these technologies and methods.

The remaining content of this article is organized as 
follows. The “Plant Disease Basics” section provides an 
overview of the fundamental definitions and common 
symptoms associated with crop disease. The “Hyperspec-
tral Features” section explores a range of relevant hyper-
spectral features for monitoring crop disease and develops 
four criteria for selected features. The “Algorithms for 
Modeling Crop Disease” section reviews the algorithms 
used in monitoring crop disease using hyperspectral data. 
The “Areas of Application” section presents practical ap-
plications of hyperspectral monitoring in crop disease 
management. The “Case Studies” section shows two case 
studies. The “Challenges and Future Perspectives” sec-
tion discusses the challenges and future perspectives in 

utilizing hyperspectral remote sensing for disease moni-
toring. Finally, the “Conclusion” section summarizes a 
general overview and conclusion.

PLANT DISEASE BASICS
Crops face various environmental stresses, which impact 
their growth, development, survival, and final yield. These 
stresses are classified into biotic and abiotic categories. Abi-
otic stresses, such as solar radiation, salinity, waterlogging, 
nutrient shortages, temperature extremes, and heavy met-
als, can affect the metabolism, growth, and development 
of the crop [18], [19]. In contrast, biotic stresses arise from 
interactions between crops and other living organisms, 
such as fungal pathogens, weeds, insect pests, nematodes, 
protists, viruses, and viroids [20]. For the purpose of this 
review, the term “crop disease” refers specifically to biotic 
stress, as defined in Nutter et al. [21].

Disease responses in crops result from complex in-
teractions among various organisms. These interactions 
can affect different crop components, including roots, 
stems, leaves, and fruits, and may have both direct and 
indirect impacts on crop physiology and biochemistry 
[Figure 1(a)]. For example, viruses can cause damage by 
inducing pigment degradation, structural wilting, and 
necrosis, which may lead to nutrient deficiencies, such 
as phosphorus deficiency [22]. Fungal pathogens can 
cause a diverse range of diseases, including anthracnose, 
leaf spot, rust, and wilt. These symptoms can be moni-
tored as changes in canopy reflectance [23]. In addition, 
the temporal aspect of disease symptoms is important. 
Short-term disease manifestations often reflect changes 
in photosynthesis, respiration, and transpiration rates. In 
contrast, long-term infections can have more persistent ef-
fects on crop growth and development [24].

Crop responses to disease are typically continuous but 
often exhibit nonlinear characteristics [25]. Responses to 
disease can be divided into three phases based on the sever-
ity and duration of the stressors. Taking the case of rice leaf 
blast as an example, the disease starts with a few watery le-
sions (usually one or two) on infected leaves, which are of-
ten difficult to monitor under field conditions. In the mild 
stage, several small brown spindle lesions appear on the 
leaf surface. The surface generally appears normal, except 
for the necrotic lesions. As the disease progresses, the severe 
infection stage features multiple distinct fusiform plaques 
on the leaf surface, accompanied by wilting and yellowing 
around the lesions [26].

It is important to note that the same disease can produce 
different symptoms depending on environmental condi-
tions and the developmental stage of the crop. As shown 
in Figure S1 in the supplementary materials available 
at  https://doi.org/10.1109/MGRS.2025.3603640, different 
diseases may also lead to similar symptoms. Therefore, a 
thorough understanding of the physiological responses of 
crops to specific diseases is crucial for accurate disease iden-
tification and effective mitigation strategies.
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HYPERSPECTRAL FEATURES
Hyperspectral features calculated from hyperspectral re-
flectance can be used to identify, analyze, and classify 

different materials or conditions. Since the early hyper-
spectral work of Baret et al. [27], numerous features have 
been proposed for assessing crop structure and physiology 
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FIGURE 1. A comprehensive framework of remote sensing-based crop disease monitoring: from crop-disease interaction to disease feature and 
modeling analysis algorithms. (a) Crop-disease and crop-light interactions under different disease severity. (b) Spectral response and feature 
selection criteria. (c) Algorithms for monitoring disease. VIS: visible reflectance; NIR: near-infrared reflectance; SWIR: shortwave IR reflectance.
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changes and monitoring crop disease. This review divides 
hyperspectral features into spectral, textural, and biophysi-
cal features such as pigment light absorption and SIF (refer 
to Table 1). These features, when collected over multiple 
time points, can provide valuable temporal information. 
Moreover, incorporating auxiliary data from other sources 
can enhance disease monitoring accuracy by supplement-
ing the hyperspectral data.

SPECTRAL FEATURES
The visible (VIS) and near-infrared (NIR) spectral domains 
are commonly used to monitor crop disease [28], [29], [30], 
[31], [32] as they are highly sensitive to changes in pigments, 
photosynthesis, and water content caused by disease. Chlo-
rophyll, which gives vegetation its green color, strongly 
absorbs in the red (650–700 nm) and blue (400–500 nm) 
spectral regions. It has maximum reflectance in the green 
wavelengths (560 nm), as shown in Figure 1(b). Antho-
cyanins, reflecting strongly in red wavelengths, have an 
absorption maximum at approximately 530 nm. Similarly, 
the red-edge region (680–780 nm) is sensitive to changes in 
the photosynthetic rate [33], [34]. The NIR region is sensi-
tive to foliar and canopy structure, while the shortwave IR 
(SWIR) region is particularly sensitive to leaf water content.

Hyperspectral reflectance refers to an object’s ability to 
reflect light across various wavelengths, which is captured 
by hyperspectral sensors. Commercial hyperspectral sen-
sors on the market have spectral capabilities that cover the 
entire range, or selected portions, of the electromagnetic 
spectrum from 400 to 2,500 nm. They can retrieve between 

30 and more than 2,000 individual bands [35]. Each object 
or material exhibits a unique reflectance pattern at specific 
wavelengths, forming a distinct spectral “fingerprint” that 
can be used to identify or differentiate between healthy 
crops or diseases. While hyperspectral reflectance provides 
rich spectral information, it is significantly influenced by 
atmospheric and lighting conditions.

Vegetation indices (VIs) are often used to compensate 
for some of the effects of environmental factors and are 
widely employed to characterize crop information. Many 
VIs have been proposed since the early 1970s to monitor 
crop biophysical, biochemical, and physiological proper-
ties [47]. These properties are closely correlated with crop 
disease, making VIs practical tools for monitoring disease 
(see Table S1 in the supplementary materials available at 
https://doi.org/10.1109/MGRS.2025.3603640). The most 
basic VIs are obtained from an algebraic combination of 
spectral reflectance [48]. Among these, the photochemi-
cal reflectance index (PRI) is one of the most commonly 
used indices for quantifying spectral changes caused by dis-
ease. PRI is based on variations in xanthophyll concentra-
tion and pigment pool sizes, enabling it to effectively track 
light-use efficiency and photosynthetic performance [49]. 
Variants of PRI, such as normalized PRI (PRIn) and modi-
fied PRI, have also been used for disease monitoring [39], 
[50], [51]. Additionally, several VIs sensitive to crop pig-
ments have been employed for disease monitoring. These 
include the normalized phaeophyte index [52], Vogelmann 
index [53], transformed chlorophyll absorption ratio/opti-
mized soil adjusted VI [54], Lichtenthaler et al. [55], and 

TABLE 1. HYPERSPECTRAL FEATURES FOR MONITORING CROP DISEASE.

ADVANTAGES DISADVANTAGES RELATED STUDIES

SPECTRAL FEATURES

Hyperspectral reflectance
Spectrum transformation
WFs
VIs

Simple calculation Poor transferability
Mixed spectrum

[10], [36]

SPATIAL FEATURES

Textural features Represents the spatial pattern Affected by spatial resolution
Requires imaging sensors

[37], [38]

PIGMENT LIGHT ABSORPTION

Anthocyanins 
Chlorophylls
Xanthophyll V + A+Z pool
Carotenoids 

Early response
Good transferability 
Robustness

Complexity of physically based models [39], [40]

FLUORESCENCE EMISSION

Solar-induced fluorescence Early response Weak signals
High spectral resolution
Lack of disease specificity

[41], [42]

TEMPORAL INFORMATION Minimized confounding effects Increased workload [43]

AUXILIARY DATA

Vegetation temperature Early response Atmospheric correction issue
Complex retrieval
Lack of disease specificity

[41], [44]

Structural information Surface penetrating Lack of chemical information [45], [46]
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pigment-specific normalized difference for chlorophyll 
a [56]. Likewise, VIs sensitive to water content, including 
the water index, disease-water stress index, and normal-
ized difference water index, have been utilized to monitor 
diseases [57], [58], [59]. Although VIs are useful in many 
cases, they generally ignore the finer spectral details that 
hyperspectral data can offer. Thus, while these indices are 
practical, they are inherently suboptimal for hyperspectral 
applications that require a more nuanced understanding of 
crop health [60].

The red-edge inflection point and three-edge parameters 
are also used to capture unique spectral characteristics of 
crop disease. These indices encompass position, amplitude, 
and area within wavelength regions of substantial spectral 
variability [61], [62]. For instance, Lin et al. [63] investigated 
the sensitivity of 36 three-edge parameters to rice sheath 
blight. They highlighted that the ratio index of the red-edge 
area to the green-peak area was the most important feature 
for distinguishing foliar sheath lesions from foliar blade le-
sions. Feng et al. [64] demonstrated that the sum of the first 
derivatives within the blue edge was significantly correlated 
with the severity of wheat powdery mildew. While these VIs 
can represent changes in crop health to some extent, they 
generally lack disease specificity.

To monitor a particular disease, disease-specific indices 
are generally developed after evaluating the sensitivity of 
spectra to the specific symptom associated with the tar-
get disease. For example, the healthy index was created to 
monitor sugar beet diseases by testing all possible combina-
tions of a single wavelength and a normalized wavelength 
difference [65]. The yellow rust spectral index was designed 
to estimate the severity of wheat yellow rust [66], and the 
Fusarium head blight classification index was developed 
to classify healthy and diseased areas of wheat spikelets 
[67]. Developing such indices requires a clear understand-
ing of how hyperspectral spectra respond to the disease 
symptoms. A more direct method of building VIs involves 
mimicking the mathematical form of classical indices and 
exhausting all possible band combinations. For example, 
Marzougui et al. [68] calculated the normalized differ-
ence spectral indices using the formula of the normalized 
difference vegetation index (NDVI) and all combinations 
of wavelengths, and Meng et al. [58] used the form of the 
healthy index to construct a three-band combination in-
dex. However, these disease-specific indices, derived from 
leaf spectral data, often do not account for the structural 
parameters of crops, leading to decreased accuracy when 
applied to canopy-level monitoring tasks [69]. Future ef-
forts should focus on enhancing the robustness of disease-
specific indices to different crop species and environmental 
conditions, thereby enabling real-time disease detection 
across agricultural landscapes.

Several transformations of the raw spectrum can also be 
applied to monitoring crop disease, such as the derivative 
transformation [70], [71] and wavelet features (WFs) [36], 
[59], [72], [73]. These transformations often produce features 

equivalent to or even more numerous than the original re-
flectance data. Consequently, the sensitivity and specificity 
of these features to crop disease require careful analysis.

TEXTURAL FEATURES
Image texture represents the distribution of pixel grayscale 
values and their spatial neighborhood relationships. Tex-
tural features have been applied in monitoring crop disease, 
including wheat powdery mildew [37], [38], [74], Fusarium 
head blight [30], [31], and yellow rust [75]. The most com-
monly used method for calculating textural features is 
based on the gray-level cooccurrence matrix (see Figure S2  
in the supplementary materials available at https://doi.
org/10.1109/MGRS.2025.3603640). This method allows 
for the extraction of various textural features, such as con-
trast, homogeneity, energy, and entropy [37], [38]. As a type 
of spatial feature, textural features can effectively monitor 
diseases that cause variations in leaf or canopy patterns. 
However, their performance depends on spatial resolution.

PIGMENT LIGHT ABSORPTION
The absorption properties of crop pigments, expressed 
as pigment concentration, are critical indicators of crop 
diseases. They reflect symptoms such as discoloration and 
chlorosis [39], [76]. Numerous studies have demonstrated 
that analyzing pigment concentration is essential for ac-
curately detecting infected crops. It also helps distinguish 
symptoms caused by pathogens from those induced by 
water stress. Zarco-Tejada et al. [40] found that anthocy-
anin content was critical for distinguishing Xylella fastidi-
osa infections in olive trees from water-stress responses, 
while chlorophyll content (Cab) was relevant in almonds. 
Similarly, Watt et al. [77] identified Cab, carotenoid con-
tent, and leaf area index (LAI) as the most critical features 
for predicting the severity of Dothistroma needle blight in 
radiata pine, using UAV hyperspectral imagery. In a recent 
study, Poblete et al. [78] analyzed the progression of pig-
ment concentration as symptoms worsened due to vascu-
lar pathogens in a multidate, multisite, and multispecies 
study. They found that pigment concentrations played dif-
ferent roles depending on the stage of the infection. As dis-
eases progress, changes in pigment concentrations evolve, 
highlighting the importance of monitoring pigment dy-
namics over time to assess disease severity. These pig-
ments can be retrieved based on radiative transfer models 
(RTMs), which simultaneously leverage information from 
the entire wavelength range [79], [80]. However, these in-
version methods based on complex physical models may 
introduce errors [81], [82].

SOLAR-INDUCED CHLOROPHYLL FLUORESCENCE
SIF provides valuable information about photosynthetic ac-
tivity, making it a crucial indicator for assessing crop health 
and detecting disease [83], [84], [85]. Several methods have 
been developed to quantify SIF at the foliar and canopy lev-
els, including the Fraunhofer-line discrimination method 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chinese Academy of Agricultural Sciences. Downloaded on September 20,2025 at 14:30:49 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/MGRS.2025.3603640
https://doi.org/10.1109/MGRS.2025.3603640


IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        7 

[86], RTMs [87], [88], spectral-fitting methods [89], and 
singular vector decomposition [90]. However, retrieving 
SIF from spectral images is challenging as the SIF signal un-
der natural light conditions constitutes less than 1% of the 
incident energy [91]. Fortunately, recent work has shown a 
strong relationship between SIF quantified with subnano-
meter resolution [0.1–0.2-nm full width at half-maximum 
(FWHM)] and narrowband resolution (5.8-nm FWHM). 
This demonstrates that SIF can be tracked in relative terms 
using broader resolution sensors [92]. This has enabled the 
use of broader-band imaging spectrometers to quantify SIF 
and detect biotic stress with high accuracy [39], [40], [50]. 
Given the potential of SIF in disease monitoring, future 
research should focus on developing algorithms that can 
isolate SIF from other sources of variability, improving its 
specificity for disease monitoring.

TEMPORAL INFORMATION
Temporal information, derived from sequences of hyper-
spectral images over time, can significantly enhance crop 
disease monitoring accuracy. Such temporal data allow 
for identifying trends in crop growth. For example, An-
deregg et al. [43] demonstrated that temporal changes in 
canopy spectral reflectance enabled the quantification of 
Septoria tritici blotch in various wheat germplasms. This 
approach minimized the confounding effects of geno-
type and environment. Compared to reflectance spec-
tra obtained at individual time points, time-integrated 
information offers improved specificity and robustness 
in assessing crop disease. Temporal features can also aid 
in distinguishing diseases from physiological aging. De-
spite these advantages, few studies have investigated the 
use of hyperspectral data from multiperiod images for 
monitoring crop disease. The primary challenges in us-
ing time-series data for disease monitoring include the 
increased workload and cost associated with data acqui-
sition and analysis.

AUXILIARY DATA
Multimodal collaboration is generally an efficient frame-
work for monitoring crop disease [60]. Multimodal remote 
sensing data can provide a more comprehensive under-
standing of the complex interactions between diseases and 
crops. The widely used data to complement hyperspectral 
data for disease monitoring are thermal and lidar data. 
Thermal data provide insights into temperature variations 
and moisture stress, while lidar data offer precise 3D struc-
tural information of the crop canopy.

VEGETATION TEMPERATURE
Vegetation temperature is useful for determining transpi-
ration rates and assessing crop health [93]. Pathogens col-
onize crop vessels, block sap flow, reduce transpiration, 
and increase canopy temperature [39], [42]. Combining 
vegetation temperature with hyperspectral characteris-
tics has been employed for early disease monitoring [41], 

[74], [94], [95], discriminating pathogens with similar vi-
sual symptoms [96], and disentangling biotic from abiotic 
sources of stress [40]. Zarco-Tejada et al. [39] conducted a 
pioneering study using airborne hyperspectral and ther-
mal data to analyze trees experiencing early stress caused 
by the bacterial pathogen Xylella fastidiosa. They derived 
indicators of vegetation temperature and the crop water 
stress index (CWSI) from thermal images. Additionally, 
they estimated canopy structural and foliar biochemical 
traits using RTM inversion and calculated the sensitivities 
of narrow-band spectral indices using hyperspectral im-
ages. All these indicators underwent multivariate analysis 
using ML to classify the previsual incidence and severity 
of the disease on a large field scale. Despite considerable 
advances in both satellite and UAV-based thermal sens-
ing, challenges remain. The accuracy of thermal data is 
often compromised by data correction issues, making it 
difficult to distinguish crop stress from disease infection 
or the confounding effects of rapidly changing environ-
mental conditions [97].

STRUCTURAL INFORMATION
Lidar technology can accurately obtain 3D structural infor-
mation about objects, enabling the precise segmentation of 
crops, shadows, and crop overlap [98]. This structural infor-
mation often complements hyperspectral data by address-
ing the issue of spectral confusion (spectral confusion arises 
when different materials or objects exhibit similar spectral 
characteristics, making it difficult to differentiate between 
them based solely on spectral information). By providing 
precise distance measurements and detailed 3D point cloud 
information, lidar assists in overcoming spectral confusion 
and enables better discrimination and identification of ob-
jects. Many studies have investigated the static and dynamic 
changes of structural and functional phenotypes in agri-
culture using lidar technology [99]. For example, lidar data 
have been used to segment individual trees in data prepro-
cessing to improve the accuracy of monitoring disease with 
hyperspectral images [45]. Lidar metrics, such as crown 
volume, crown area, and various intensity-based statistics 
(e.g., coefficient of variation, 25th percentile, and kurtosis 
of crown-return intensity), have been used in models of dis-
ease classification [46]. Spatially aligning lidar and spectral 
data, however, remains a considerable challenge due to dif-
ferences in sensor characteristics, resolution, and georefer-
encing [100].

FOUR CRITERIA FOR SELECTING FEATURES
The essence of remote sensing feature selection corresponds 
to feature engineering in computer science. Feature engineer-
ing involves selecting, creating, and transforming features 
from raw data to improve the performance of ML. Effective 
feature engineering is crucial in ML tasks as it can greatly im-
pact models’ performance and generalization ability [101]. 
This article identifies four simple criteria for feature selec-
tion: diversity, robustness, relevance, and parsimony.
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	◗ Diversity: Obtaining multiple and independent crop 
features, rather than only one, is essential for accurate-
ly identifying crop disease. Multiple spectral domains 
or sensor modalities can provide a comprehensive un-
derstanding of complex interactions between diseases 
and crops.

	◗ Robustness: The radiance received by hyperspectral sen-
sors is the combination of multiple radiation sources, like 
atmospheric and environmental conditions. Features 
should be robust to variations in geometry, illumination, 
canopy structure, and soil, which ensures a model’s gen-
eralization to different spatiotemporal scales.

	◗ Relevance: Features must be relevant to the target disease, 
helping models better capture the relationship between 
features and diseases for more accurate monitoring. Fea-
tures should also be pertinent to the stage of the disease 
as different stages trigger physiological responses associ-
ated with distinct features. Additionally, features should 
align with the properties of the sensors. An overview of 
widely used spectral indices can be found in an online 
database (www.indexdatabase.de).

	◗ Parsimony: Reducing feature dimensionality can improve 
model efficiency and generalization as well as decrease 
computational costs. But the number of features should 
still be kept uncertain. For example, two to four disease-
specific spectral features were sufficient to identify rice 
leaf blasts [26], but eight spectral bands to monitor to-
mato spotted wilt achieved the best classification accu-
racy [102].
The relevance of the four criteria for feature selection can 

be widely observed in previous practical studies. Notably, 
different diseases or stages of infection may yield different 
feature selection outcomes. In summary, there is no perfect 
feature. Therefore, we recommend considering instrument 
attributes and disease characteristics and focusing on ex-
tracting appropriate features.

ALGORITHMS FOR MODELING CROP DISEASE
The methods used to monitor crop disease can be broad-
ly categorized into three groups: 1) traditional statistical 
methods, 2) ML-based methods, and 3) physically based 
methods. Each of these methods has unique strengths, but 
they also come with inherent limitations, as detailed in Ta-
ble 2. These algorithms have shown varying levels of accu-
racy when applied to specific crops and diseases, as detailed 
in Table 3. The distinction between traditional statistical 
approaches and ML is often debated [103]. In this study, 
traditional statistical methods emphasize inference—aim-
ing to understand how hyperspectral features respond to 
disease. In contrast, ML methods focus on monitoring ac-
curacy, leveraging flexible algorithms to capture complex 
and nonlinear relationships between spectral features and 
crop disease.

TRADITIONAL STATISTICAL METHODS
Over the last few decades, scientists have attempted to use 
single or multiple indicators to estimate the extent of dis-
ease occurrence. Univariate and multivariate regression-
based algorithms have been extensively used to monitor 
crop diseases using hyperspectral signatures. For example, 
PRI exhibited a negative linear relationship with the dis-
ease index of wheat yellow rust [104]. A single VI index 
lacks specificity for identifying and differentiating diseases, 
but combining two or more spectral VIs can improve dis-
ease monitoring accuracy [9], [107]. Multivariate regression 
models, such as multinomial logistic regression (MLR) and 
partial least squares regression (PLSR), have also been used 
for monitoring diseases [105], [106]. These methods quickly 
build relationships between hyperspectral features and dis-
ease severity. However, they tend to oversimplify complex 
interactions between spectral data and plant physiological 
responses, limiting their effectiveness for detecting early-
stage or subtle disease symptoms.

TABLE 2. COMPARATIVE ANALYSIS OF VARIOUS ALGORITHMS APPLIED IN HYPERSPECTRAL REMOTE SENSING FOR CROP 
DISEASE MONITORING.

ALGORITHMS ADVANTAGES DISADVANTAGES EXEMPLARY STUDIES

TRADITIONAL STATISTICAL METHODS

Univariate linear regression Simple and easy to understand
Suitable for selecting features

Limited to linear relationships 
Does not consider interactions among features
Limited areas of application 

[104]

Multivariate regression Considers multiple features Limited areas of application [105], [106]

SAM Considers multiple source features
Computationally efficient

Sensitive to noise
Performs poorly for weak spectral responses

[107]

ML-BASED METHODS

Traditional ML Suitable for modeling complex relationships Requires feature selection [108], [109]

DL The end-to-end model
Suitable for modeling complex relationships

Difficult to interpret [102], [110]

PHYSICALLY BASED METHODS

Synergistic integration of 
RTMs and ML

Leverages available physical understanding Model errors due to the simplification of reality
Accumulation of model errors

[44], [78]

SAM: spectral-angle mapper; ML: machine learning; DL: deep learning; RTM: radiative transfer model.
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Classical supervised classification algorithms also 
have been used [111], [112], [113], including minimum 
distance and spectral-angle mapper (SAM). The mini-
mum distance method uses Euclidean or Mahalanobis 
distances to compare pixel values with the centroid 
value of the sample class. SAM classifies each spec-
trum based on its angular similarity to the spectra of 
known endmembers. These methods are useful for hy-
perspectral classification, particularly in well-defined 
cases. However, these methods can struggle to differ-
entiate between classes in complex or heterogeneous 
canopies, where disease symptoms overlap with healthy 
crop features.

In the future, traditional statistical methods should 
incorporate more advanced preprocessing steps to bet-
ter handle noise and mixed spectra. For example, in-
corporating ML feature selection or dimensionality 
reduction techniques may improve the robustness of 
these methods.

MACHINE LEARNING-BASED METHODS
ML algorithms have proven to be indispensable tools for the 
effective monitoring of crop disease. Supervised ML clas-
sification algorithms such as linear discriminant analysis 
(LDA), random forest (RF), support vector machines (SVMs), 
stepwise discriminant analysis (SDA), multilayer perceptron, 
radial basis function, decision trees (DTs), and K-nearest 
neighbor (KNN), have all been widely used [58], [73], [95], 
[108], [109], [114], [115]. These traditional ML algorithms can 
capture complex relationships, but careful engineering and 
selection of features are required before modeling.

DL, on the other hand, simplifies the modeling process 
by eliminating the need for manual feature engineering 
[116]. Convolutional neural networks (CNNs) are particu-
larly effective for these tasks because they can extract highly 
discriminatory features and leverage the spatial-contextual 
and spectral information contained in cubes of hyperspec-
tral imagery data. For instance, 1D-CNNs have demonstrat-
ed a high average accuracy of 97.72% in identifying disease 

TABLE 3. EXAMPLES OF HYPERSPECTRAL REMOTE SENSING METHODS FOR MONITORING CROP DISEASE. 

CROP DISEASE PLATFORM FEATURE METHOD BEST ACCURACY REFERENCE

TRADITIONAL STATISTICAL METHODS

Wheat yellow rust Handheld, 
airborne

Spectral RE — [104]

Sugar 
beet

Leaf spot, powdery 
mildew, and rust

Leaf clip Spectral COC — [9]

ML-BASED METHODS

Wheat Powdery mildew Benchtop Spectral, textural PLSDA 91.4% [37]

Rice Rice blast Leaf clip Spectral ML-SFFS  
(ML: LDA, KNN, SVM)

Asymptomatic: 
69.58%
Early: 95.77%
Mild: 98.65%

[26]

Wheat Septoria tritici blotch Handheld Spectral, temporal PLSDA 86% [43]

Wheat Fusarium head blight Benchtop Spectral, SIF SVM 89% [41]

Tomato Spotted wilt virus Robotic  
manipulator

Spectral GAN 96.25% [102]

Pine 
forests

Pine wilt disease UAV Spectral 3D-Res CNN Early: 88.11% [110]

PHYSICALLY BASED METHODS

Holm 
oak

Phytophthora- 
induced symptoms

Airborne Spectral, pigment concentration, 
SIF, multimodal 

3D RTM, SVM, RF 71–82% [44]

Olive Xylella fastidiosa Airborne Spectral, pigment concentration, 
SIF, multimodal 

3D RTM, SVM, NNE, 
LDA

80.9% [39]

Olive, 
Almond

Xylella fastidi-
osa and Verticillium 
dahliae 

Airborne Spectral, pigment content, 
structural properties, CWSI, SIF

PRO4SAIL, SVM, RF, 
spectral clustering,  
multistage classification

92%–94% [39]

Olive Xylella fastidi-
osa and Verticillium 
dahliae 

Airborne Spectral, pigment content, 
structural properties, CWSI, SIF

PRO4SAIL, SVM, RF, 
spectral clustering,  
multistage classification

92%, 98% [96]

Grape Yellowness and esca Leaf clip Spectral, pigment  
concentration, textural

PROSPECT-D, BPNN 99% for both 
diseases

[120]

CWSI: crop water stress index; SIF: solar-induced fluorescence; RE: regression equation; COC: coefficient of correlation; PLSDA: partial least squares discriminant analysis; ML-SFFS: 
ML-based sequential floating forward selection; LDA: linear discriminant analysis; KNN: K-nearest neighbor; SVM: support vector machine; GAN: generative adversarial net; 3D-Res 
CNN: 3D convolutional neural network; RF: random forest; NNE: neural network ensemble; BPNN: back-propagation neural network. These methods have the potential to be applied 
across multiple crop disease scenarios, although some were originally developed and validated in specific contexts.
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spots on potato leaves using hyperspectral imagery [117]. 
Similarly, 2D-CNNs achieved an F1 score of 0.75 and an 
accuracy of 74.3% when classifying hyperspectral pixels of 
healthy wheat heads versus those affected by Fusarium head 
blight in field conditions [118]. Furthermore, 3D-CNNs can 
outperform 2D-CNNs because they take advantage of the 
spectral dimension in hyperspectral data cubes, enabling 
the model to capture both spatial and spectral relationships 
[119]. In particular, 3D-Res CNNs achieved an overall accu-
racy of 88.11% in identifying pine trees infected with pine 
wilt disease from UAV-based hyperspectral images, with 
an accuracy of 72.86% for detecting early-stage infections 
[110]. Although CNNs models can deliver high accuracy, 
their performance is heavily dependent on large labeled 
training datasets. In agricultural remote sensing, such data-
sets are often limited, especially for diseases that are rare or 
are poorly represented in existing datasets.

PHYSICALLY BASED METHODS
Physically based methods involve radiative transfer pro-
cesses to model disease monitoring. These processes are 
described by RTMs. RTMs have been developed to simulate 
the interaction of electromagnetic radiation with canopy 
elements (such as leaves and soil). RTMs represent the ar-
chitecture of the canopy and biochemical properties of its 
constituents. Although crop diseases are often considered 
secondary variables that cannot be directly associated with 
the mechanisms of the radiative transfer process [121], they 
are closely linked to primary variables (e.g., pigment con-
centrations and LAI) that are directly involved in radiative 
transfer. This connection necessitates the integration of 
RTMs with either statistical or ML methods to develop ro-
bust physically based models for disease monitoring.

The physically based method is a powerful tool for esti-
mating biophysical and biochemical variables without the 
need for in situ reference data. These variables are direct 

and interpreting indicators caused by crop disease. For ex-
ample, Camino et al. [51] combined the PROSAIL model 
with RF to monitor Xylella fastidiosa infections. They used 
chlorophyll and anthocyanin concentrations derived from 
PROSAIL as inputs to RF to improve monitoring accuracy. 
Similarly, Hornero et al. [44] employed additional RTMs, 
including FLIGHT+FLUSPECT and FLIGHT+PROSPECT, to 
invert a broader range of crop functional traits related to 
oak decline, such as water content, chlorophyll, carotenoid, 
anthocyanin levels, fluorescence, LAI, crown temperature, 
and dry matter content.

In these studies, RTMs provide valuable physical con-
straints and domain knowledge, but they also have limi-
tations in representing complex disease processes. Further 
research is needed to explore more flexible and advanced 
approaches for combining RTMs with ML to improve the 
accuracy of disease monitoring under diverse conditions.

AREAS OF APPLICATION
Research utilizing hyperspectral sensing for monitoring 
crop disease can be categorized into five application areas: 
1) assessment of disease incidence and severity, 2) discrimi-
nating among stressors, 3) detecting disease symptoms at 
the early stage, 4) discriminating crop resistance in breed-
ing, and 5) monitoring disease on a large scale. The con-
cepts of these categories are illustrated in Figure 2. The first 
category serves as the fundamental task in monitoring 
crop diseases and has already been discussed in previous 
sections. To avoid redundancy, this section will instead 
provide an overview of the advancements in categories 2 
through 5.

STRESS DISCRIMINATION
Crops are constantly exposed to various stress factors, in-
cluding biotic and abiotic stress, which can affect their 
growth, development, and productivity. These stresses 

Disease Incidence No Incidence Incidence

Disease Severity Healthy Low Severity Medium Severity High Severity

Early Detection Healthy Asymptomatic Early

Target Disease
Stress Type Discrimination Other Disease/Mixed Diseases/Abiotic Stress
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FIGURE 2. Applications of hyperspectral sensing in disease monitoring. Green, yellow-green, pink, and brown colors serve as indicators of an 
increase in the severity of diseases. Yellow indicates the target disease incidence. Gray indicates stress factors other than the target disease.
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often manifest similar symptoms, such as discoloration and 
wilting. Hyperspectral remote sensing has been used to 
discriminate differences between symptoms induced by 
pathogens [96] and different types of stress in crops, in-
cluding water-induced stress [40], [122], nutrient deficiency 
[71], [123], [124], pest and disease infestation [126], extreme 
weather [127], and heavy-metal toxicity [128], [129], [130]. 
Different types of stresses can be identified because each 
stressor induces unique spectral responses in the crop. For 
example, nutrient deficiency and yellow rust can be identi-
fied by changes in PRI [71], and drought stress and infesta-
tion have different patterns of change in reflectance in NIR 
and SWIR [122]. A phylodynamic approach with multistage 
classificatory methodology has been used for uncoupling 
biotic-abiotic spectral dynamics to reduce uncertainty [40]. 
Disease outbreaks are often influenced by factors such as 
climate and crop growth history [131]. The main groups 
of pathogens favor critical environmental factors, includ-
ing high temperature, large rainfall, high relative humidity, 
pH, and fertility [132]. Looking ahead, integrating remote 
sensing data with real-time environmental and agricultural 
expertise holds great potential for more accurate stress dis-
crimination.

EARLY SYMPTOM DETECTION
The accurate detection and diagnosis of the symptoms 
at the early stage of disease are crucial for minimizing 
crop yield losses and preventing the spread of disease. 
Researchers have recently explored the potential of using 
remote sensing features and spectral crop trait analysis to 
monitor the previsual symptoms of disease infection. A 
practical framework using high-resolution hyperspectral 
images, thermal data, and RTMs has been developed to 
evaluate the efficacy of detecting previsual Xylella fastidiosa 
infection [39]. The results indicated that this framework 
can identify disease symptoms before they are visible to 
the human eye. Camino et al. [51] developed a method for 
detecting disease that combined spatial epidemiological 
models and remote sensing to accurately monitor the spa-
tial distribution of Xylella fastidiosa in almond orchards. 
These achievements represent an important step forward 
in early crop disease detection. Building on these success-
ful approaches, future research should explore the com-
plementary advantages of multisource data to enhance 
early disease detection capabilities.

BREEDING RESISTANCE
The development of resistant cultivars is a key strategy 
for controlling pathogen infection. Phenotyping is a vital 
step in breeding programs because it involves the qualita-
tive characterization of how genomic expressions affect 
crop function within specific environments [133], [134]. 
Phenotypes have traditionally been visually estimated, 
which is laborious and time consuming and can be sub-
jective depending on the breeder’s expertise. Image-based 
phenotyping offers a promising solution by enabling more 

objective and efficient resistance assessments [10], [68], 
[135], [136]. However, challenges arise from the variability 
in reflectance caused by genotypic diversity and fluctuat-
ing environmental conditions—key factors in resistance 
breeding. To address these challenges, Anderegg et al. [43] 
devised a spectral-temporal feature method that relies on 
relative changes in spectral reflectance over time. They em-
ployed two types of dynamic parameters. The first type, 
“key time-points,” corresponded to specific moments when 
predetermined criteria were met. The second type, called 
“change parameters,” represented either the rate or dura-
tion of a particular process. Their findings highlighted the 
absence of specificity and robustness in evaluating disease 
based only on reflectance spectra at individual time points. 
By tracking temporal changes in canopy reflectance dur-
ing pathogenesis, this approach significantly reduces the 
confounding effects of genotype and environment, thus 
enhancing the specificity of crop disease monitoring. This 
approach has shown success with handheld spectroradi-
ometers, but UAV-mounted sensors may be a more effec-
tive solution for high-throughput monitoring in the future. 
Additionally, integrating hyperspectral data with genomic 
data could lead to improved models for genotype-environ-
ment interactions.

LARGE-SCALE MONITORING
Large-scale monitoring refers to the observation and 
analysis of extensive geographic areas, which is crucial 
for understanding and managing widespread crop disease 
challenges. A review of the literature identified only two 
relevant studies that employed satellite-based hyperspec-
tral data for monitoring crop disease. One study by Apan 
et al. [137] assessed several narrow-band indices derived 
from EO-1 Hyperion imagery to identify sugarcane areas 
affected by orange rust. Another study by Dutta et al. [138] 
developed an integrated two-step wilt detection approach 
and a disease-specific spectral index for Cajanus cajan us-
ing the ASI-PRISMA hyperspectral dataset. Their method 
enabled the detection of wilt in Cajanus cajan plants at least 
two to three weeks earlier than conventional multispectral 
satellite imagery.

While significant progress has been made in hyper-
spectral disease monitoring at the leaf and field scales, 
applying these methods at larger scales presents both 
opportunities and challenges. Since 2000, seven satel-
lites equipped with hyperspectral sensors have been 
launched, including EO-1 Hyperion, PROBA-CHRIS, 
HyspIRI, HJ-1A, PRISMA, EnMAP, and PACE (see Table S2 
in the supplementary materials available at https://doi.
org/10.1109/MGRS.2025.3603640 for details). These sat-
ellites offer valuable spectral data for monitoring crop 
disease over large regions. However, limitations such 
as lower spatial resolution and cloud cover can reduce 
the effectiveness of satellite-based disease monitoring. 
In contrast, ground-based and UAV-based hyperspectral 
imaging systems have demonstrated higher accuracy in 
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crop disease detection due to their superior spatial res-
olution and greater operational flexibility. As a result, 
the future of large-scale crop disease monitoring will 
likely involve integrating ground-based, airborne, and 
satellite-based hyperspectral technologies to leverage 
the complementary strengths of each. Moreover, multi-
spectral satellite data, such as those from Sentinel and 
Landsat, typically provide better spatial resolution than 
hyperspectral data. Therefore, combining multispectral 
and hyperspectral data can offer both high spatial and 
spectral resolution, greatly enhancing the accuracy of 
large-scale disease monitoring.

CASE STUDIES

RESPONSE TIMES OF HYPERSPECTRAL FEATURES 
MONITORING MAIZE LEAF SPOT DISEASE
We assessed the sensitivity of biophysical and spectral 
features as indicators of maize responses to leaf spot dis-
ease using high-resolution UAV hyperspectral imagery 

collected over a 30-day period after infection. The re-
sponse time of hyperspectral features was determined 
using two statistical criteria: 1) 95% confidence intervals 
derived from a z-distribution and 2) effect size (Cohen’s 
d). A detectable response was considered on the first day 
that consecutive substantial differences (effect size > 0.8) 
were observed between infected and healthy areas. More 
detailed information can be found in Bai et al. [139]. This 
analysis included hyperspectral features, biophysical pa-
rameters derived from the PROSAIL model, spectral re-
flectance, VIs, and WFs. Our results showed that the WFs 
provide the earliest indicator of disease onset, with detect-
able responses to leaf spot as soon as six days after infec-
tion (DAI 6). The VIs followed, with responses detectable 
by DAI 8, and the response in Cab became evident by DAI 
10. For example, compared to DAI 0 measurements [Fig-
ure 3(a)], the change in Cab (ΔCab) first increased and then 
gradually decreased. The accumulation of Cab in infected 
areas lagged behind healthy areas, with a notable differ-
ence in the Cab change rate observed from DAI 10 onward. 
However, spectral reflectance in the 400–900-nm wave-
length range was prone to noise, and no significant con-
tinuous changes in response to the disease were observed 
during the monitoring period.

VIs responded to the disease by DAI 8, with the PRIn, 
related to xanthophyll and photosynthetic efficiency, 
showing continuous changes until DAI 30 [Figure 3(b)]. 
PRIn remained close to zero in healthy areas at DAI 0 but 
sharply increased in infected areas after DAI 15. WFs, 
particularly WF586,6, WF590,7, and WF590–598,8 (located 
within the yellow edge region, 550–650 nm), exhibited 
the earliest response at DAI 6. Changes in WF590,8 in in-
fected areas consistently preceded those in healthy areas. 
Although WFs responded rapidly to disease onset, the 
trends were noisy and discontinuous, particularly in the 
early stages of infection [Figure 3(c)], suggesting instability 
in the early stage.

ALGORITHMS FOR MONITORING MAIZE LEAF SPOT
We evaluated three modeling techniques for monitor-
ing maize leaf spot from UAV-collected data across four 
disease stages: early, mild, moderate, and severe. At each 
stage, we used leaf spot sensitive features selected in case 
study A to regress the maize leaf spot disease index. The 
modeling approaches include 1) two ML-based methods, 
including gradient-boosting DT (GBDT) and attention-
based gated recurrent unit (GRU) neural networks (GRU-
attention model), and 2) a physically based method—the 
process-guided DL (PGDL) approach, which uses a GRU-
attention model pretrained on simulations and applies it 
to field data using transfer learning. The RTM simulations 
were produced by the Large-scale Remote Sensing Data 
and Image Simulation Framework (LESS) [140]. The leaf 
spectra inputs of the LESS were measured leaf spectra of 
diseased leaves with varying lesion coverage. The other in-
puts, such as plant spacing, sun zenith, and sun azimuth, 

2 4 6 8 10 12 15 2224 300

0 –1.09 –0.84 4.98 –0.38 –1.98–1.66 –1.52 –1.29 –1.77 –2.37

0 1.12 1.03 0.79 1.05 1.27 1.88 1.29 1.84 1.92 1.51

–0 –0.01 –0.15 –1.07 –1.09 –0.93 –1.73 –0.95 –1.53 –1.45 –1.59

–15

–1

–2

–1

2

1

0

0

–10
–5
0
5

10
15
20
25
30

(a)

2 4 6 8 10 12 15 22 24 300
(b)

2 4 6 8 10 12 15 2224 300

(c)
DAIs

∆C
ab

 (
*1

)
∆P

R
I n

 (
*1

0)
∆W

F
59

0,
8 

(*
10

0)

Infected

Healthy
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infected (n = 72 samples) and healthy areas (n = 72 samples) on 
different days after infection (DAIs). The error bars represent the 
95% confidence interval, and the values included represent the 
effect size, as determined by Cohen’s d.
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were based on observations from Xinxiang, China, on 1 
August 2021 between 11 a.m. and 2 p.m., in alignment 
with local agricultural practices.

The result showed that all models performed worse in 
the early disease stage; the PGDL approach demonstrated 
superior and more stable accuracy in that stage (Figure 4). 
The best performance was achieved with PGDL (R2 = 0.85 
in 2021, R2 = 0.93 in 2023). The lowest root mean-square 
error (RMSE) was observed with PGDL (RMSE = 0.08 in 
2021, RMSE = 0.06 in 2023), indicating that prior knowl-
edge combined with measured leaf spectra significantly en-
hanced maize leaf spot monitoring accuracy.

CHALLENGES AND FUTURE PERSPECTIVES

LITERATURE REVIEW
The primary goals of this systematic review were to un-
derstand the advances in monitoring crop disease using 
hyperspectral remote sensing and to analyze the research 
challenges and trends. We adopted the method of gather-
ing literature proposed by Cronin et al. [141] to obtain all 
relevant studies. First, the keyword combination “remote 
sensing & hyperspect* & (crop disease OR biotic) & (ag-
riculture OR crops)” was used to search for studies in the 
Web of Science database published before 31 July 2024. 
This processing yielded a large pool of records. The iden-
tification step involved an initial check to remove dupli-
cates and exclude records that were not peer reviewed as 
irrelevant (e.g., conference proceedings or reports). After 
examining the titles and abstracts, we excluded review 
studies and records that focused on topics other than crop 
disease. As a result, a total of 192 studies were involved in 
our dataset. Finally, we carefully read and analyzed these 
studies and categorized them based on research methods 
and application scenarios, aiming to gain insights into 
the progress and challenges in hyperspectral monitoring 
of crop disease.

CURRENT STATUS AND FOCUS
The number of studies monitoring crop disease using 
hyperspectral techniques increased sharply from 2006 
to 2024 [Figure 5(b)]. Most publications were from the 
United States, followed by China, France, Australia, India, 
Spain, and Italy [Figure 5(a)]. Figure 5(c) highlights the 
most frequently studied crops, diseases, and hyperspec-
tral features. The crops most commonly studied are wheat, 
rice, olive, potato, and oil palm. The most commonly re-
searched diseases included blight, rust (specifically stripe 
and yellow rusts), mildew (both powdery and downy mil-
dews), rot (stem and root rots), and various spot diseases 
(such as target, bacterial, and leaf spots). Among these, 
blights, including Fusarium head blight, fire blight, leaf 
blight, and late blight, were extensively studied. Research 
on hyperspectral features primarily focused on spectral 
characteristics, with growing attention on pigment con-
centration and SIF.

KEYWORD TRENDS ANALYSIS

“BURSTINESS” ANALYSIS OF KEYWORDS
The burstiness analysis in CiteSpace [142] was used to 
identify the 10 most prominent keywords in monitor-
ing crop disease using hyperspectral remote sensing for 
2006–2024. The burstiness analysis allows evaluating 
the frequently cited keywords and their significant peri-
ods. The burst strength in CiteSpace characterizes these 
keywords, with higher burst strength indicating a greater 
frequency of citation over a specific period. A burst means 
a sudden surge in the frequency of a particular keyword. 
We adopted a broad perspective, incorporating all the key-
words from the titles, abstracts, keywords provided by the 
authors, and keywords extracted from the titles of the ref-
erences cited (Figure 6).

The most prominent keyword (based on strength) in 
2020 was ML, followed by DL, bacterial wilt, and yellow 
rust. The research foci can be broadly categorized into 
two periods, based on evolving research trends and key-
word bursts: from 2006 to 2012, focused on equipment, 
algorithms, and applications, and from 2012 to the pres-
ent, with an increased focus on advanced algorithms like 
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FIGURE 4. Model performance for monitoring maize leaf spot 
across different disease stages. Methods include two ML-based 
methods—gradient boosting decision tree (GBDT) and GRU neural 
network with attention mechanism (GRU-attention model)—and 
one physically based method, the process-guided DL approach 
(PGDL). (a) 2021. (b) 2023.
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ML and specific disease applications. For equipment, the 
burst of handheld radiometry began in 2006 and gradu-
ally weakened after 2012 due to the development of imag-
ing hyperspectral technology and other platforms, such as 
drones and airborne platforms. For algorithms, research-
ers constructed disease index models for simulating dis-
eases before 2012. For applications, sugar beet was a focal 
research species.

The research foci from 2012 to the present have focused 
on algorithms and applications. For algorithms, the burst 
intensity of ML and DL remained high due to the rapid de-
velopment of advanced artificial intelligence technologies. 
More remote sensing features were simultaneously used to 
monitor disease, such as the wage index and the LAI. For 

applications, yellow rust and bacterial wilt received con-
siderable attention. Drought stress has been continuously 
monitored since 2006 with weak intensity, but distinguish-
ing between drought stress and disease has remained a re-
search challenge.

A TIME ZONE OF KEYWORDS
We analyzed temporal zones, using CiteSpace to re-
search deeper into the evolving landscape of research 
foci in monitoring disease using hyperspectral remote 
sensing for 2006–2024 (Figure 7). Please note that we 
included only keywords from titles and those provided 
by the authors to represent the evolution of our research 
topic better. While this approach limits the analysis to 

keywords found in titles and ab-
stracts, which may exclude some 
relevant terms not explicitly men-
tioned by the authors, we believe 
that it provides a focused view of 
the main research trends.

The keywords can be divided into 
six categories: type of disease; spe-
cies; features; algorithms; aspects of 
sensors, platforms, and scales; and 
an “others” category. The “others” 
category includes broad keywords 
that cannot be allocated to the pre-
viously mentioned five categories, 
such as remote sensing, disease, and 
biological stress.

The UAV has frequently ap-
peared in the category containing 
“sensors, platforms, and scales” 
since 2020, and the multimodal 
fusion technology of hyperspec-
tral and thermal IR sensors at-
tracted attention in 2022. ML and 
artificial intelligence in the algo-
rithm category are consistent with 
the results of keyword burstiness 
analysis. Spectral features in the 
“features” category, such as reflec-
tance, VI, and wavelet transform-
based features, were the main 
terms identified. Biochemical-
parameter features (e.g., nitrogen 
and anthocyanin concentrations) 
and physiological parameters (e.g., 
fluorescence) were also mentioned.

FUTURE PERSPECTIVES
Based on the research presented 
previously, we can identify emerg-
ing trends and future research di-
rections in hyperspectral remote 
sensing for monitoring crop disease. 
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The main challenges and trends have been illustrated 
in Figure 8.

Relationship between foliar and canopy scales: Observation 
platforms have shifted over time from handheld de-
vices to airborne platforms, including piloted aircraft 
and drones, and the scale of observation has expanded 
from individual leaves to crops and even entire ecosys-
tems. Foliar scale can have direct disease information, 
while canopy remote sensing is affected by canopy 
structure, soil background, and sun-observer geom-

etry. These complexities often lead to a loss of accuracy 
when extrapolating results from foliar-scale analyses 
to the canopy scale [143]. To address this issue, future 
research should explore the factors causing the discon-
nect between canopy and foliar remote sensing. This 
includes examining structural and angular dependen-
cies that might influence the data, potentially with the 
physically based RTMs. By understanding the invariants 
and establishing a more seamless link between leaf-level 
and canopy-level information, the robustness and ca-
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pability of remote sensing algorithms can be improved. 
Additionally, the development of advanced hyperspec-
tral sensors with higher spatial and spectral resolutions 
could bridge the gap between foliar and canopy scales. 
These sensors would enable more precise measurements 
at both scales, facilitating better integration of data and 
improving the accuracy of disease detection models.

	 Soil, crop structure, and phenology effects: Remote sensing 
captures a wide range of surface information, encom-
passing vegetation, diseases, and elements like soil, 
crop structure, and phenology [121]. For instance, the 
spectral response curves of soil and crop lesions can eas-
ily overlap, particularly in the VIS spectra [Figure 1(b)]. 
This overlap necessitates careful data preprocessing, in-
cluding soil segmentation, before developing any moni-
toring models. Furthermore, selecting or developing 
spectral features minimally affected by soil background 
variations is crucial.

	 The crop structure, specifically in the canopy scale, can 
significantly impact spectral responses. This effect is most 
evident in metrics like the LAI and vegetation cover frac-
tion. For instance, in dense canopies (LAI > 4), studies 
have suggested that structural variations have less influ-
ence on PRI, although this effect may vary across differ-
ent crops and environmental conditions [143]. Therefore, 
choosing the appropriate temporal window for data 
collection can mitigate the influence of such structural 
disparities. Additionally, multiangle remote sensing can 

provide accurate information on crop structure [144]. In-
tegrating multiangle hyperspectral images with advanced 
data fusion techniques could further reduce the impact 
of structural variations, enabling more accurate disease 
detection across different crop types and growth stages.

	 Phenological changes, such as leaf senescence, can also 
mimic the spectral features of disease [145]. There is an 
emerging need to transition from general group-wise 
comparisons to more sensitive methods capable of de-
tecting deviations in individual diseases. One promising 
approach is to employ time-series analysis of hyper-
spectral data, such as DL-based anomaly detection and 
change point analysis. This could differentiate between 
typical seasonal changes and disease-related anomalies, 
enabling early disease detection at the individual level. 
Similar to phenology, certain physiological and bio-
chemical characteristics of crops indeed exhibit signifi-
cant daily cyclical changes [146]. For example, influenced 
by the light cycle, photosynthesis, stomatal opening and 
closing, and chlorophyll synthesis and degradation show 
daily cyclical changes. Therefore, considering the timing 
of data collection and crop growth characteristics is very 
important for remote sensing disease monitoring.

	 Lack of sensitive and robust features: Traditional ML has 
remained the most used approach for hyperspectral 
disease monitoring in recent years. One of the key chal-
lenges in building traditional ML models is identifying 
appropriate input features [147]. Researchers typically 
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rely on their expertise to select spectral, textural, struc-
tural, thermal, pigment, and SIF features. However, the 
way these features respond to disease remains largely 
unclear. Understanding the feature response mecha-
nisms and identifying features with high sensitivity and 
robustness are crucial for advancing future model devel-
opment and improving monitoring accuracy. Therefore, 
rigorous controlled experiments at both leaf and canopy 
scales are necessary.

	 Challenges in large-scale monitoring: Several hyperspec-
tral satellite missions focused on vegetation monitoring 
are currently underway. These missions, which provide 
rich spectral information, hold significant potential 
for monitoring large-scale crop disease. However, spa-
tial and temporal resolution remain key limitations for 
large-scale applications. To make hyperspectral data 
suitable for agricultural applications, additional down-
scaling techniques are required. For example, multi-
spectral satellites offer higher spatial resolution, while 
UAV platforms provide greater flexibility, particularly in 
terms of revisit frequency. Furthermore, the integration 
of ancillary data, such as climate information (such as 
temperature, humidity, and precipitation), can signifi-
cantly influence the occurrence, spread, and severity of 
crop disease. Overall, the use of multimodal data fusion 
techniques can enhance the accuracy and effectiveness 
of crop disease monitoring at larger scales.

	 Scarcity of data for DL: Although DL has significant po-
tential for hyperspectral disease monitoring, its appli-
cation has been limited due to small and imbalanced 
datasets [148]. To address this issue, a new paradigm 
called “PGDL” has emerged [149]. PGDL integrates 
domain-specific knowledge and physical models into 
DL approaches, which could help overcome challenges 
in hyperspectral disease monitoring, such as the diffi-
culty of solving inverse problems or modeling complex 
physical processes. This approach has been evaluated 
for quantifying the biomass and nitrogen concentra-
tion of cover crops from hyperspectral remotely sensed 
imagery [81]. PGDL, however, has rarely been tested in 
remote sensing for monitoring disease because disease 
cannot be directly inferred using RTMs. Two potential 
solutions could resolve this issue: first, from a mechanis-
tic perspective, developing RTMs that consider disease 
parameters, and second, from an empirical perspective, 
using measured foliar spectral information for disease 
with different severities to simulate canopy data using 
canopy RTMs. In summary, combining RTMs with DL 
is a promising solution for exploring hyperspectral data 
for crop disease, as demonstrated in recent publications 
[39], [50], [150]. However, the way to combine RTMs 
with DL requires further exploration and research.

	 Siloed datasets: In contrast to digital red, green, and blue 
(RGB) images for classification, hyperspectral data for 
disease monitoring are costly due to the specialized 
equipment required and the time-intensive nature of 

fieldwork and data processing. This, in turn, hinders the 
transferability and validation of monitoring algorithms. 
A comprehensive study that includes different scales, 
regions, and diseases requires collaboration among in-
ternational researchers. For example, the rice blast index 
(RIBI) development relied on a vast dataset of foliar- and 
canopy-scale reflectance spectra and satellite imagery 
gathered over seven independent campaigns in four 
years [151]. The specificity of RIBI was assessed using 
independent hyperspectral datasets containing healthy 
leaves and leaves infected with sugar beet rust, powdery 
mildew, and Cercospora leaf spot [9]. Sharing datasets 
of crop disease plays a crucial role in evaluating model 
transferability by providing a standardized benchmark 
for fair comparisons. Furthermore, we should develop 
standardized data formats and metadata protocols for 
hyperspectral data. The standardizations will effectively 
help the sharing and integration of datasets across dif-
ferent research groups and institutions. 

	 Overall, hyperspectral remote sensing holds significant 
potential for monitoring crop disease across a range of 
scales, from individual organs [152] to entire ecosystems 
[78]. However, practical implementation in real-world 
agricultural settings remains a critical consideration. 
This involves assessing the cost-effectiveness and op-
erational feasibility of these methods [125]. Moreover, 
integrating hyperspectral remote sensing with other 
agricultural management practices, such as precision 
agriculture, integrated pest management, and climate-
smart agriculture, could enhance the sustainability and 
resilience of agricultural systems. By combining hyper-
spectral data with additional agronomic data sources, 
including soil health maps, weather forecasts, and crop 
growth models, farmers and agricultural advisors can 
make more informed decisions regarding disease man-
agement, resource allocation, and crop protection.

CONCLUSION
Effective and timely monitoring of crop disease is critical 
for field management, food security, crop breeding, and 
ultimately, improving final yield. Recent advancements in 
hyperspectral sensor technologies and data analysis tech-
niques have provided powerful tools for monitoring crop 
disease at both high spatial and temporal resolutions. This 
review offers a comprehensive overview of the key aspects 
involved in hyperspectral remote sensing for crop disease 
monitoring. We began by defining common crop diseases 
and their symptoms, and then we explored hyperspectral-
derived features used in crop disease monitoring. We also 
introduced four criteria for selecting relevant features. Ad-
ditionally, we reviewed algorithms currently used in crop 
disease detection and highlighted their advantages and 
limitations. Furthermore, we highlighted five key applica-
tion areas and presented two case studies to illustrate the 
potential of hyperspectral remote sensing. Finally, the fu-
ture perspective of hyperspectral remote sensing for crop 
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disease monitoring was discussed after an objective analy-
sis of articles. Looking ahead, advancements in image pro-
cessing, data analysis, and the development of sensors with 
subnanometer spectral resolution will greatly improve dis-
ease monitoring accuracy and scalability. The integration 
of hyperspectral data with other agricultural management 
practices, along with reductions in the cost of hyperspectral 
instruments, will further accelerate the adoption of these 
technologies. By overcoming current barriers, these inno-
vations will lead to more effective and timely disease man-
agement and improved agricultural practices, ultimately 
supporting global food security and crop resilience.
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