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Legacy effects cause systematic
underestimation of N2O emission factors

Haoyu Qian1, Zhengqi Yuan1, Nana Chen1, Xiangcheng Zhu 2, Shan Huang3,
Changying Lu4, Kailou Liu5, Feng Zhou 6, Pete Smith 7, Hanqin Tian 8,
Qiang Xu9, Jianwen Zou 10, Shuwei Liu 10, Zhenwei Song 11, Weijian Zhang11,
Songhan Wang1, Zhenghui Liu1, Ganghua Li1, Ziyin Shang 11 ,
Yanfeng Ding 1 , Kees Jan van Groenigen 12 & Yu Jiang 1

Agricultural soils contribute ~52% of global anthropogenic nitrous oxide (N2O)
emissions, predominantly from nitrogen (N) fertilizer use. Global N2O emis-
sion factors (EFs), estimated using IPCC Tier 1 methodologies, largely rely on
short-term field measurements that ignore legacy effects of historic N fertili-
zation. Here we show, through data synthesis and experiments, that EFs
increase over time. Historic N addition increases soil N availability, lowers soil
pH, and stimulates the abundance of N2O producingmicroorganisms and N2O
emissions in control plots, causing underestimates of EFs in short-term
experiments. Accounting for this legacy effect, we estimate that global EFs and
annual fertilizer-induced N2O emissions of cropland are 1.9% and 2.1 Tg N2O-N
yr−1, respectively, both ~110% higher than IPCC estimates. Our findings high-
light the significance of legacy effects on N2O emissions, emphasize the
importance of long-term experiments for accurate N2O emission estimates,
and underscore the need for mitigation practices to reduce N2O emissions.

Nitrous oxide (N2O) is the leading substance responsible for strato-
spheric ozone depletion and ranks as the third most important
greenhouse gas (GHG)1,2. Its global warming potential is ~300 times
greater than that of CO2 over a 100-yr period1,3. Agricultural soils
account for ~52% of global anthropogenic N2O emissions, resulting
from the addition of synthetic nitrogen (N) fertilizers and animal
manure to soil4,5. Direct soil N2O emissions from N input in the

agricultural sector have increased from 1.5 Tg N yr−1 in the 1980s to
2.3 Tg N yr−1 during 2007–2016 (ref. 5). Furthermore, global use of
chemicalN fertilizer has increased from81 TgNyr−1 in 2000 to 113 TgN
yr−1 in 2020 (ref. 6) and is expected to continue rising7, indicating that
N2O emissions from agricultural soils are likely to grow further.

Regional and global N2O emissions are often estimated using N2O
emission factors (EFs), which represent the percentage of applied N
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emitted as N2O-N. This approach is commonly used because N fertili-
zer rates are a reliable predictor of N2O fluxes8–10. EFs are determined
by comparing N2O emissions from fertilized plots to emissions from
control plots that receive no additional N, and then dividing the dif-
ference by the N rate in the fertilized plot. A recent global synthesis
estimated EFs at 1.02% for maize, 0.58% for wheat, and 0.52% for rice8.
In IPCC Tier 1 methodologies, default global EFs are 1% for upland
crops and 0.4% for rice9. Emission factors can be estimated through
several approaches. The EFs of IPCC Tier 1 methodologies9 are calcu-
lated by statistical analysis of field measurements11–14 and meta-
analysis15–17, both of which rely on measurement of in situ N2O emis-
sions. However, these in-situ EFs are usually derived from short-term
experiments (e.g., 1–3 years) that involve setting both the control plots
and the N-treated plots within working croplands8. Since the soils in
these experiments have often been fertilized prior to the start of the
study, there is the potential for legacy effects from previous
fertilization18. However, the extent to which past fertilization affects
current N2O emissions remains uncertain.

N2O emissions from agricultural soils are produced pre-
dominantly by the microbial processes of nitrification (the aerobic
oxidation ofNH4

+ toNO3
−) anddenitrification (the anaerobic reduction

ofNO3
− toN2)

19,20. Both processes are affectedby soilN availability, soil
pH, and especially soil microbial activity19,21. N fertilizer addition
increases substrate availability for nitrifying and denitrifyingmicrobial
communities, which may change their composition and activity over
time22,23. A global meta-analysis indicates that long-term N fertilization
stimulates soil denitrification rates21. Also, long-term N fertilizer addi-
tion generally reduces soil pH24,25, which may stimulate N2O
emissions12. Additionally, fertilizer N can stimulate N turnover process
so that the microbes will use native soil N for N2O production26. These
results suggest that N2O emissions from control plots in short-term
experiments may be elevated due to legacy effects of prior fertiliza-
tion, resulting in the underestimation of EFs. Similarly, modeling
studies27,28 suggest that legacy effects may affect EF estimates because
of historical soil N accumulation. However, this hypothesis of legacy
effect on N2O emissions has seldom been tested experimentally. The
contribution of legacy effects to N2O emissions is still unquantified,
both at field and global scales, largely because it is difficult to quantify
in current model simulations28.

To address these challenges, we employed a combination of
experimental approaches and data synthesis to determine whether

in-situ EF estimates change over time. First, we synthesized data from
field experiments around the world to quantify differences in EFs
between short-term (i.e., ≤3 years) and long-term experiments (i.e., >5
years) under similar experimental conditions (see Methods). In this
approach,minor differences in soil properties, climate conditions, and
agricultural management practices between short-term and long-term
observations could still influence N2O. To address these limitations
and to determine the mechanisms underlying legacy effects, we con-
ducted a series of long-term field experiments covering the threemain
crop cereals: maize, wheat, and rice. We compared N2O fluxes across
three treatments: long-term zeroN input, short-term zeroN input, and
long-term fertilizer N input (see Methods). Because all three treat-
ments were located at the same site, this approach eliminated artifacts
related to differences in properties, climate conditions, and manage-
ment practices on N2O emissions. We also measured soil C and N
availability, pH, and the abundances of functional genes associated
with N2O production to explore the underlying mechanisms. Finally,
we scaled up our findings to estimate global fertilizer induced N2O
emissions from cropland. This study highlights the role of legacy
effects on global N2O emission estimates, particularly in the context of
IPCC Tier 1 methodologies.

Results
EFs increase with experimental duration
Our data synthesis reveals that the average EF in short-term experi-
ments is significantly lower compared to long-term experiments
(Fig. 1a). This difference arises because N2O emissions in the control
treatments (i.e., background N2O emissions, E0) were significantly
higher in short-term experiments (Fig. 1b). Model selection analysis
indicates that experimental duration is the strongest predictor of dif-
ferences in both EFs and E0 between short-term and long-term
experiments (Supplementary Fig. 1). Specifically, the differences in EFs
between short-term and long-term experiments (ΔEF) increased with
experimental duration (Fig. 1c), while differences in E0were negatively
correlated with experimental duration (Supplementary Fig. 2).

In our field experiments, high N2O emissions were generally
observed after N fertilization, rainfall, and drainage events (Supple-
mentary Fig. 3). Current fertilizer N input and N input history both
significantly affectedN2Oemissions (Fig. 2a and Supplementary Fig. 3).
Compared to plots without current N fertilizer input (i.e., +N −N and
−N −N), N fertilizer input (+N +N) significantly increased the N2O
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Fig. 1 | Results from a data synthesis on the effect of experimental duration
on EFs. a the EFs of long-term and short-term N fertilization and their difference.
b the difference in background N2O emissions (ΔE0) and N2O emissions under N
fertilization (ΔE) between long-term and short-term N fertilization. c ΔEF under

different durations (Δyr). EFs, N2O emission factors; ΔEF, the difference in EFs
between long-term and short-term N fertilization. The error bars represent 95%
confidence intervals. Source data are provided as a Source Data file.
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emissions in all three crops. The N2O emissions were 33–73% higher in
the short-termzeroN fertilizer input (+N −N) treatment than in control
plots that did not receive N fertilizer input for many years (−N −N).
Consequently, the short-term EFs were 40%, 37%, and 30% lower than
long-term EFs in wheat, maize, and rice, respectively (Supplemen-
tary Fig. 4a).

To study the effect of current and past N fertilization in the
absence of plants, we conducted an incubation experiment using soils
from the same sites. Consistent with the field measurements, N input
and fertilization history significantly affected N2O emissions in our
incubation experiments (Fig. 2b, Supplementary Fig. 5). Compared to
the treatments without current N fertilizer input, prolonged N input
increased the N2O emissions by 29–76% in wheat soils, 40–113% in
maize soils, and 30–66% in rice soils. TheN2Oemissions of +N −Nwere
36%, 52%, and 27% higher than that of −N −N in wheat, maize, and rice,
respectively. As a result, short-term EFs were 42–48% lower than long-
term EFs in the three experiments (Supplementary Fig. 4b). Together,
these results indicate that short-term experiments underestimate EFs,
mainly due to legacy effects of N fertilizer input on soil properties in
zero N plots.

Soil properties change with experimental duration
Compared to the −N −N treatment, +N +N increased soil total N con-
tents (Supplementary Table 1) and extractable N concentrations (i.e.,
NH4

+ and NO3
−) in all three field experiments (Supplementary Fig. 6a).

Soil fertilizationhistory also significantly affected the soil extractableN
concentrations. Soil extractableN concentrations of +N −N treatments
were 39–74% higher than for −N −N treatments (Supplementary
Fig. 6a). Compared to the−N −N treatment, +N +Nand+N −N reduced
the soil pH by 0.2–0.7 units (Supplementary Fig. 6b), but they did not
affect the soil organic carbon contents (Supplementary Table 1) and
dissolved organic C concentrations (Supplementary Fig. 6c).

Current N fertilizer additions increased the abundances of func-
tional genes associated with N2O production (i.e., nirK and nirS) in all
three field experiments (Fig. 3a, b). Compared to the −N −N treatment,
+N −N significantly increased the abundance of nirS, but not the
abundance of nirK. Current N fertilizer input also significantly
increased the abundance of N2O consuming microorganisms (i.e.,
nosZ) (Fig. 3c). Historic fertilizer N input did not affect the abundance
of nosZ in wheat and maize, but significantly increased the abundance
of nosZ in rice. Both current and historic N fertilizer additions

increased the ratio of the abundances of nirK plus nirS to the abun-
dance of nosZ (Fig. 3d). The relative importance analysis indicates that
among a wide range of soil environmental factors, the abundance of
nirS is the most important factor affecting N2O emissions (Supple-
mentary Fig. 7).

Global EFs and N2O emissions from cropland
To quantify N legacy effects on global cropland N2O emission inven-
tories, we first developed a quadratic regression model for ΔEF,
including duration of zero N fertilizer input in control plots and a wide
range of environmental factors (i.e., soil organic carbon, soil clay, and
pH), and then scaled up our results (see Methods). Because our data
synthesis indicates that legacy effects wane over time and N fertiliza-
tion is a long-term practice, we considered a long-term scenario (i.e.,
40-year) without N fertilizer input in control plots (see Methods). In
other words, ΔEF indicates the error made by assuming IPCC default
values. The global averageΔEF valuewas estimated at 0.88%with a 95%
Cl from −0.07% to 1.37% (Fig. 4a). Most cropping areas around the
globe show ΔEF values > 0.8%, but regions at high latitudes, such as
northern Europe, parts of Central America, and the southern part of
South America, exhibit relatively low ΔEF (< 0.5%). Soil organic carbon
content was the most important driver of spatial variation in ΔEF in
75–77% of the total global harvest area (Supplementary Fig. 8).

We used our estimates of global ΔEF to adjust IPCC Tier 1 default
EFs (see Methods). Our adjusted global cropland N2O EF is 1.9%
(Figs. 4b and 5a). To investigate global N legacy effect on hotspots of
EFs,we used the global cropland EFs dataset byCui et al.8. This dataset,
which is derived from1507georeferenced in-situfield EFs observations
around the world, accounts for variation in crop type, environmental
conditions and management and served as a baseline to adjust the
global cropland N2O EFs. Consistent with IPCC defaults, we found that
global cropland N2O EFs increased by ~110% (Fig. 5a). Hotspots—
defined as areas with EFs greater than 3%—were primarily located in
high-latitude regions, Southeast Asia, and Middle America (Fig. 4c).

Based on the IPCC Tier 1 default and the global cropland EF
dataset, the original global cropland fertilizer-induced N2O emissions
were estimated to be ~1.0Tg N2O-N yr−1 (Fig. 5b). However, our
adjusted estimate indicates global N2O emissions of 2.1 Tg N2O-N yr−1.
This suggests that the IPCC Tier 1 default approach underestimates
global cropland fertilizer-induced N₂O emissions by 1.1 Tg N2O-N yr−1

when compared with our updated EFs.
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Discussion
Our data synthesis revealed that historic fertilizer N input increases
current N2O emissions on a global scale. Additionally, our field and
incubation experiments provide further evidence that EF increases
over time with prolonged N application. Specifically, plots that
recently stopped receiving fertilizer N input emitmore N2O than those
where N input ceased longer ago (Fig. 2 and Supplementary Fig. 1).
Several mechanisms may have contributed to these results. First, our
experiments showed that historic fertilizer N input increased soil total
N contents and extractable N concentrations, leading to higher N2O
emissions. These results are consistent with long-term experiments
indicating that N fertilization increased soil N turnover rate and N
availability over time29–32. Second, the soil pH was much lower in the
short-term zero N fertilizer treatment, because historic N fertilization
reduced soil pH over time24,33. Low soil pH often reduces the activity of
N2O reductase and increases the ratio of N2O to N2O and N2, resulting
in higher N2O emissions34.

Our experiments further indicate that the abundance of nirS was
much lower in long-term zero N fertilizer treatment (−N −N) than in

the short-term zero N fertilizer treatment (+N −N, Fig. 3b), which can
result in lower N2O production potential. These results corroborate
several long-term experiments showing that prolonged N fertilization
increased the abundances of nirK and nirS, and soil N2O production
potential21,31,35. Furthermore, the +N −N treatment increased the ratio
of the abundances of nirK plus nirS to the abundance of nosZ, indi-
cating a greater potential for N2O production compared to N2O con-
sumption, relative to the −N −N treatment36. In addition, several
studies indicate that long-term N input alters the structure of com-
munity structure of nirK and nosZ 37,38, and increases the complexity of
microbial co-association networks39–41. These changes may further
increase N2O emissions in plots without current fertilizer N input.
These results align with our observation that the abundance of nirS is
themost important factor affecting N2O emissions, and emphasize the
role of soil microbes in driving the differences in N2O emissions
between the short- and long-term zero N fertilizer treatments. Taken
together, our findings indicate that historic N addition increases N2O
emissions primarily through increased soil N availability, reduced soil
pH, and the stimulation of N2O-producing microorganisms.
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Fig. 4 | Spatial pattern of simulatedΔEF and adjusted global cropland N2O EFs.
a ΔEF is predicted with the quadratic model weighted by similarity. b adjusted
global cropland N2O EFs based on Tier 1 methodology. c adjusted global cropland
N2O EFs based on Cui et al. 8. EFs, N2O emission factors; ΔEF, the difference in EFs

between long-term and short-term N fertilization. Values are shown only where the
proportionof harvested areawithin the grid cell is greater than 1%. Themap images
were generated using MATLAB R2023a.
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N2O emissions of short-term zero N fertilizer treatments are
substantially higher than those from long-term zero N treatments in
both our data synthesis and experimental results. This suggests that
short-term experiments are influenced by legacy effects from historic
N fertilization, which, in turn, lowers the estimated EFs. Consequently,
our findings indicate that the IPCC Tier 1methodology underestimates
the global EFs for cropland, because it does not account for legacy
effects of previous N fertilizer input. The IPCC Tier 1 default global EF
of 1% is derived from empirical models based on in-situ N2O emissions,
factoring in variables such as climate, soil conditions, agricultural
management, and measurement techniques12,14,42. However, these
models assume the same soil conditions for both fertilized and zero-N
treatments, overlooking the lingering impact of previous N
fertilization.

Our estimated EF aligns with values from an ensemble of process-
basedmodels (1.7%, 1.2–2.3%)5 and a recent top-down inversionmodel
(2.3%)10. This consistency suggests that the legacy effect of fertilizer N
is a key factor contributing to the discrepancies between field mea-
surements and model-based approaches. Our EF estimates are likely
conservative, because residual fertilizer N has accumulated over more
than 40 years in major cropping regions with long histories of N fer-
tilization, such as China, the USA, and Europe43. Furthermore, while
this study focused on N2O emissions during the crop season, recent
research indicates that approximately 44% of global N2O emissions
occur during the fallow season44, further supporting the likelihood that
our estimates underestimate the true emissions.

Our experiments focused solely on the effects of chemical N fer-
tilizer input, but other N sources, such as organic amendments and
crop residues, also gradually stimulate soil C and N availability and the
activities of soil microbes involved in N2O emissions45–47. This suggests
that EFs of these amendments are also time-dependent. Therefore,
temporal changes in soil properties caused by management practices,
along with climate variability, should be considered when estimating
N2O emissions from agricultural soils. Overall, our results emphasize
the importance of long-term experiments in accurately assessing the
impact of agricultural practices on N2O emissions.

Our study introduces an approach for quantifying the contribu-
tion of legacy effects to N2O emissions, offering new insights into the
mechanisms driving these effects and helping to reconcile dis-
crepancies between fieldmeasurements andmodel-based estimates of
EFs. However, several uncertainties and limitations in our assessments
should be acknowledged. First, although we took care to only include
comparisons between short-term and long-term experiments that
matched in N rate, crop type and spatial range (see Methods), there
were inevitable differences in soil properties, agricultural manage-
ment, and N2O measurement technology, which introduce some
uncertainty into the data analysis. Yet, relative importance analysis
indicates that the impact of differences in climate conditions and soil
properties between short-term and long-term experiments on ΔEF
were minimal (Supplementary Fig. 9). Moreover, our statistical
approach assigned greater weight to studies with high similarity
between short- and long-term sites, further reducing the uncertainty in
our ΔEF estimates. Additionally, although we have gathered as much
information as possible regarding climatic conditions, soil properties,
andmanagement practices in our data synthesis, certain factors—such
as climate extremes, soil tillage history, and soil acidification—werenot
included due to the lack of reported data in most studies, which may
lead to uncertainty in our assessments. Second, the spatially explicit
global dataset that we used to adjust global cropland N2O EF includes
~5% of observations from long-term experiments. Since our approach
assumes that all these observations are from short-term experiments,
this may have slightly affected the accuracy of our estimates.

Thirdly, the number of observations in our data synthesis is rela-
tively low, especially long-term observations. However, our field
experiments demonstrate that the relationship between EFs and

experimental duration occurs under a wide range of environmental
and experimental conditions, suggesting that our approach is robust.
Finally, our data synthesis may be subject to geographical bias, as the
studies in our dataset are concentrated in China and the United States.
This restricts the explanatory power of our empirical model at the
global scale. To enhance model reliability and robustness given the
limited observations, we employed repeated tenfold cross-validation
for parameterization. Nonetheless, additional long-term fertilization
studies with comprehensive information on climatic conditions, soil
properties, and management practices would improve our estimates
of legacy effects on EFs - specifically those incorporating both short-
term and long-term zero-N input treatments to measure annual N2O
emissions. This is particularly important for understudied regions such
as Southern Asia and Sub-Saharan Africa.

Our results indicate that due to legacy effects, N fertilization sti-
mulates N2O emissions from cropland more strongly than previously
estimated, emphasizing the need for N2O emission mitigation prac-
tices. Fortunately, several agricultural practices can reduce N2O
emissions from agricultural soils. For instance, modern high-yielding
crop cultivars can reduce the N2O emissions due to higher N
uptake48,49. A recent study suggests that reducing global cropland N
surplus can lower direct N2Oemissions fromcroplandby ~30%without
yield loss8. Enhanced-efficiency N fertilizers (i.e., controlled-release
fertilizer, urease inhibitors, and nitrification inhibitors) application can
reduce N2O emissions50–52. Finally, biochar can also reduce N2O emis-
sions substantially53,54.

In summary, our findings indicate that short-term experiments
tend to underestimate EFs due to legacy effects in the control treat-
ments. Specifically, N2O emissions from short-term zero N plots input
are substantially higher compared to long-term zero N plots, due to
increased soil N availability, greater nirS abundance, and lower soil pH.
After accounting for these legacy effects, we estimate that the global
EFs of cropland are ~110% higher than the estimates provided by the
IPCC Tier 1 methodology. Likewise, we estimate that the IPCC Tier 1
methodology underestimates annual fertilizer-induced N2O emissions
from cropland by 1.1 Tg N2O-N yr−1. Given the substantial impact of N
fertilization legacy effects on N2O emissions, it is preferable to calcu-
late to calculate EFs at both field and regional scale using data from
long-term fertilization experiments. Our findings emphasize the
importance of long-term studies, and underline the need for judicious
agricultural management to curb N2O emissions.

Methods
Data synthesis
To estimate the legacy effect of N fertilization on EF estimates, we
updated the global N2O EF observation dataset by Cui et al.8 to May
2023, usingWeb of Science to search journal articles. Studies with N2O
emissions from field experiments with varying durations with at least
two different N application rates were selected, including a zero N and
a fertilizer N input treatments. Studies with the following measure-
ments were excluded: (i) experiments conducted in laboratories or
greenhouses, (ii) measurements conducted in organic (peaty) soils
whereN2O emissions aremuch higher than those inmineral soils9, and
(iii) measurements with the use of controlled-release fertilizers, or
nitrification or urease inhibitors.

The number of observations from long-term experiments (i.e.,
those lastingmore than5 years) in our dataset is anorder ofmagnitude
lower than those from short-term experiments (i.e., lasting 3 years or
less). This imbalance could obscure the effects of fertilization duration
in our analysis. To address this, we employed a pairing method to test
the differences in EFs between short-term and long-term
experiments55. Briefly, for each observation from a long-term experi-
ment in our dataset, we identified nearby short-term experiments
within a spatial range of no more than 1°. This range was selected to
optimize the balance between data availability and accuracy, as
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environmental and management conditions are generally homo-
genous within this distance (e.g., Global Land Data Assimilation Sys-
tem, https://ldas.gsfc.nasa.gov/gldas). Our approach was designed to
reduce variation in N2O emissions between short- and long-term
experiments that might arise from differences in climate conditions
between sites. Because N application rate and crop type (i.e., rice
paddy versus upland crops) are key factors influencing EFs56,57, we
ensured that that paired comparisons involved the same crop type and
a similar N application rate (within 20%) at both locations. Although
the selected pairs had similar climate, N application rate, and crop
types, minor variations remained, potentially affecting cropland N2O
emissions. To minimize the impact of these differences, we only
included pairs where the variation in N2O emissions of N addition
treatments between long-term and corresponding short-term obser-
vations was within 20% and 0.3 kg N2O-N ha−1. If a long-term observa-
tion matched several paired short-term observations, we used the
mean value of the short-term experiments. In total, we found 102
paired observations from China (96) and USA (6).

For each set of paired observations, we collected four categories
of information: (i) N2O emissions, (ii) climatic conditions, (iii) soil
properties, and (iv)management practices. Paired observations of N2O
emissions with andwithout N fertilization in the samefield experiment
were used to calculate the N2O EFs. Climatic conditions include annual
mean air temperature (MAT, °C) and annual precipitation (MAP, mm).
Soil properties include soil organic carbon content (SOC, g kg−1), pH,
bulk density (BD, g cm−3), and clay content (g kg−1). For each climatic
and soil factor, averaged values of long-term and short-term sites were
used in the data analysis. Management practices include crop type, N
fertilizer application rate (kg N ha−1 season−1), tillage, liming and
experimental duration (yr). This information was obtained from the
original papers, and the missing values were supplemented from cli-
mate (WorldClim v2.1, https://www.worldclim.org/data/worldclim21.
html) and soil databases (HWSD v1.2, https://iiasa.ac.at/models-tools-
data/hwsd).

The absolute differences in EFs between short-termand long-term
experiments (ΔEFs), assumed to reflect the legacy effects of N fertili-
zation, were analyzed using resampling methods. To determine whe-
ther our dataset followed a normal distribution, we conducted a
Kolmogorov-Smirnov test, which indicated significant deviation from
normality (P < 0.001). Given the non-normal distribution of the data,
we used a bootstrapping resampling approach (n = 100000) to esti-
mate the mean values of ΔEFs and calculate 95% confidence intervals
(CIs) around these means, using the bootstrapping function in R.

To identify the key factors determining variation in ΔEF, we con-
ducted a random forest (RF) analysis in R using the “randomForest”
package. RF is an ensemble tree-based learning method, with its
ability to quantify the relative importance based on the decrease in
model accuracy of the absence of each variable. The difference in
experiment duration between short- and long- term observations (i.e.,
Δyr) stood out as the most important predictor (Supplementary
Figs. 1 and 9).

Field experiments
We compared long- vs. short-term effects of N fertilizer input on N2O
emissions in three long-term fertilization field experiments in Chinese
cropping systems. One experiment was established in a rice-wheat
systemsince 1980 at SuzhouAcademyofAgricultural Sciences, Jiangsu
Province, China (31°27′N, 120°25′E) and the other two experiments
were established in a double maize system since 1986 and in a double
rice system since 1981 at Jiangxi Institute of Red Soil and Germplasm
Resources, Jiangxi Province, China (28°15′N, 116°20′E). Further details
on the experimental design, climate, initial soil properties, and crop
phenology can be found in Supplementary Table 2. The temperature
and precipitation throughout the crop seasons when N2O emissions
were measured are shown in Supplementary Fig. 10.

In each experiment, we selected two treatments, i.e., long-term
without N fertilizer input (−N plots) and long-term with N fertilizer
input (+N plots), to conduct our field micro-plot experiments. Soil
properties (0–20 cm) for −N plots and +N plots are shown in Supple-
mentary Table 1. Both treatments received P and K fertilizers at the
same rate. In each +N plot, we created four microplots by inserting
plastic frames (length ×width × height: 15 cm× 20 cm× 50 cm in the
rice-wheat and double rice systems, 50 cm× 50 cm× 50 cm in the
double maize system) into the soil with a depth of 45 cm (~5 cm of the
frame remained above the soil surface). Two microplots received N
fertilizer at the same rate as the rest of the plot, whereas the other two
microplots received no N fertilizer. Also, in each −N plot, we inserted
plastic frames to create two microplots that did not receive any N
fertilizer. Thus, all field experiments included 3 treatments with 6
replicates: long-term without N fertilizer input (−N −N), short-term
without N fertilizer input (+N −N), and long-term N fertilizer
input (+N +N).

The N, P, and K fertilizer rates are shown in Supplementary
Table 3. All other agricultural practices between the plots and micro-
plots are the same. To avoid artifacts related to differences in climatic
factors between short-term and long-term N fertilization treatments,
we measured N2O emissions from all plots simultaneously.

Incubation experiment
To eliminate the influence of crop plants on legacy effects, we con-
ducted an incubation experiment to test the impact of fertilizer N
history on N2O emissions. We collected soils (0–15 cm) from the −N
plots and +N plots in the above long-term field experiments using the
2 cm soil samplers. Soil sampleswere combined per plot, air-dried, and
sieved. As with the field experiments, the incubation experiment
consisted of 3 treatments for each site: −N −N, +N −N, and +N+N. We
added 50 g soils into each bottle (10 cm in diameter, 16 cm in height).
In the +N+N treatments, we also added 6mgN as urea into each
bottle. The moisture of the soil was adjusted to ~60% of the maximum
water-holding capacity. The bottles were incubated at 26 °C in the dark
for 25 days.

Sampling and measurement methods
In the field experiments, we used the static closed chamber technique
to collect N2O gas samples58,59. N2O gas samples were collected at ~7-
day intervals during the observation period, and additional gas sam-
ples were collected after N fertilization and rain events. Overall, gas
samples were collected 16 times in wheat after thinning, 20 times in
maize after thinning, and 15 times in rice after transplanting. On sam-
pling days, chambers with a size of 50 cm/100 cm (depending on plant
height) × 15 cm× 20cm were placed over the plastic frames. We then
collected four gas samples at 0, 10, 20, and 30min after placement of
the chamber. The N2O concentrations were measured by a Gas-
Monitor (1412 Photoacoustic, INNOVA, Denmark) in the rice-wheat
system and by gas chromatograph (GC-2010 PLUSAF, SHIMADZU,
Japan) in the double rice andmaize systems.We used linear regression
between gas concentrations and sampling time to calculate N2O
fluxes60. We only accepted measurements for which R2 > 0.90 and
discarded approximately 5% of the measurements. Cumulative N2O
emissions during the observation period were calculated from the
emissions between every two adjacent intervals of measurements by
the trapezoidal method45.

In the soil incubation experiments, the gas sampleswere collected
every day during the first week after N addition, and at 3-day intervals
after that. Overall, gas samples were collected 11 times in the soil
incubation experiments. On sampling days, we collected 50ml gas
sample from the bottle headspace at 0 and 2 h after sealing the bottle,
using a gas-tight push button syringe. The N2O concentrations were
measured by a Gas-Monitor (1412 Photoacoustic, INNOVA, Denmark).
The N2O flux was calculated by the change in N2O concentrations
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between the two hours. Cumulative N2O emissions were estimated
using the trapezoidal method45.

We collected fresh soils at the crop heading stage when N2O
emissions varied among treatments. Soil ammonium (NH4

+) and
nitrate (NO3

−) concentrations were measured by flow autoanalyzer
(Auto Analyzer 3, BRAN LUEBBE, Germany). A kit (Power Soil DNA
Isolation, MoBio, USA) was used to extract soil DNA.We quantified the
copies of nosZ, nirK and nirS genes to represent denitrifier abun-
dances. We used the CFX96 (Bio-Rad, America) to perform the quan-
titative real-time PCR.

Statistical analysis
We analyzed the data onN2O emissions and soil properties by one-way
ANOVA. Differences between treatments were analyzed by using the
least significant difference test. All analyses were performed with the
statistical package SPSS 27. Differences between treatments were
considered significant at p <0.05.

ΔEF modelling
To evaluate global variations in ΔEF, we developed a quadratic
regressionmodel. The response ofΔEF in themodel varies in response
to environmental and management-related factors. Akaike Informa-
tion Criterion-based stepwise regression was used to select key vari-
ables for the model using the ‘MASS’ package in R. The model was
trained and tested on a tenfold cross-validation, repeated ten
times44,61,62. Tenfold cross-validation divides observations into 10 equal
parts, training the model on 9 parts and testing on 1, with this process
repeated 10 times so each part serves as the test set once. To mitigate
bias from random divisions, the tenfold cross-validation was repeated
10 times for possible subdivisions. The averaged coefficients of the
models based on 100 trainings were stored for global spatial
prediction.

Three types of weighting methods in the regression (i.e.,
unweighted, proximity- and similarity-based weighting)63–65 were
compared to identify the bestmodel. Themethodsbasedonproximity
and similarity utilize the shortest distances between paired long- and
short-term sites, and the environmental and management (i.e., mean
annual temperature and precipitation, soil bulk density, clay content,
organic carbon content and N application rate) similarities, to weight
the observations respectively. To avoid the influences of correlation
between factors, principal component analysis was adopted to
estimate the similarities between paired sites. The performance
and robustness of the model was evaluated by comparing simulated
and observed ΔEF, using R2, slope and rootmean square error (RMSE).
The results showed that the similarity-weighted model performed
best among all models both for calibration and validation (Supple-
mentary Table 4), and was therefore selected to predict the global
variations inΔEF. The correspondingmeans and standard errors of the
model coefficients for global prediction are listed in Supplementary
Table 5.

Global prediction of ΔEF
The global patterns of ΔEF were predicted using the quadratic
model at five-arcminute spatial resolution. The input data included
the global gridded dataset of duration scenario, soil clay content,
organic carbon content and pH, which were identified as variables
for themodel (Supplementary Table 5). Given that the differences in
durations of short-term and long-term experiments range from 2 to
42 years in our dataset andΔEF increases over timewith prolongedN
application, we considered a long-term scenario i.e., 40-year without
N fertilizer input in control plots. This approach provides the most
representative estimates, as N fertilization in main cropping regions
has typically exceeded 40 years43. The soil data was acquired from
the HWSD v.1.2, and all the input data was re-gridded at the resolu-
tion of 5′ × 5′.

Attribution of spatial variation in ΔEF
To identify the dominant driver of spatial variation in ΔEF, we per-
formed a partial correlation analysis between ΔEF and environmental
variables at the global scale8,66,67. This analysis was conducted using
moving windows of 3.75°-by-3.75°. The data resolution was 5′ by 5′,
meaning that the surrounding 2025 pixels were used for each 5′ pixel.
We first calculated the coefficient and significance of partial correla-
tion for each pixel, and then identified the dominant driver as the one
with the largest absolute value of the correlation coefficient. To eval-
uate the robustness of our results, we performed similar analyses with
moving windows at higher spatial resolutions, specifically 1.75° by
1.75°, and 2.75° by 2.75°.

Global prediction of adjhusted EF
To quantify the impact of legacy effect of N fertilization, we adjusted
global cropland EFs. Grid-level adjusted EFs (AEFgy) with spatial varia-
tion (spatial resolution: 5′× 5′) and global-level EFs (AEFy) were esti-
mated by adding ΔEF to baseline EFs which did not consider the legacy
effect. The baseline EFs were from IPCC Tier 1 EF defaults9 and a recent
crop-environment-management specific N2O EF model8. We calculated
the global variation of adjusted EF using unweighted, proximity- and
similarity-weighted models to assess the robustness of the results.

Since cropland for each grid is cultivated with various crops, we
firstly calculated the baseline EF (EFgi, see Eq. 1) for each crop type at
grid level, based on gridded global datasets of crop distribution, crop-
specific N application amount, soil properties, climatic factors and
related- management practices in 2000 (ref. 8).

EFgi =
X

j

αij � xgij
+θi ð1Þ

where g is grid index; i is crop type (IPCCTier 1: upland crop andpaddy
rice; N2O EF model: maize, wheat, rice and others); j is the variable
index; x is the model independent variable; α and θ are the variable
coefficient and intercept. For the IPCC Tier 1method9, xwas crop type,
and EFgi for upland crop and paddy rice were 1% and 0.4%, respec-
tively. For the crop-environment-management specific model8, x
includes soil properties (i.e., bulk density, clay content, organic carbon
content, pH), climatic factors (i.e., temperature, precipitation and
humidity index) and related-management practices (fertilization rate,
type, frequency and placement, irrigation and tillage type). The values
of variable coefficients and intercepts of themodel can be found in Cui
et al. 8. Since ~95% of the EF observations in the dataset fromCui et al. 8

were from short-term experiments, we assume their results did not
account for legacy effects.

The adjusted EFs for each crop within grid g (AEFgiy) were gen-
erated by adding EFgi and the global prediction of ΔEFgiy (Eq. 2).

AEFgiy = EFgi +ΔEFgiy ð2Þ

The grid-level adjusted EFs (AEFgy) were calculated by weighting
AEFgiy based on N input of each crop (Eq. 3).

AEFgy =

P
iðNgi � AEFgiy=100ÞP

iðNgiÞ
ð3Þ

where N is the N input for each crop.
Finally, adjusted global-level EFs (AEFy) were calculated as the

sum of N fertilizer-induced N2O emissions divided by the sum of N
input from all grids (Eq. 4).

AEFy =

P
giðNgi � AEFgiy=100ÞP

giðNgiÞ
ð4Þ
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Uncertainty estimation of adjusted EF
AMonte Carlo simulation was used to estimate the overall uncertainty
for predicting the adjusted N2O EF. Two uncertainty sources, the
model coefficients and the global input dataset, were considered to
generate a prediction interval. The uncertainties were obtained by
randomly generating model coefficients from the fitted multivariate
normal distributions and the soil variables following independent
normal distributions with a standard deviation of 20% (ref. 8). Pre-
dicted ΔEF values were firstly calculated through 100 simulation
iterations, and then used to adjust the N2O EF of IPCC Tier 1 approach
and Cui et al. 8. This process constructed the 2.5% and 97.5% quantiles
of the adjusted EF within a 95% prediction interval.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset of differences in N2O emission factors between short-term
and long-term experiments for this study is available from Supple-
mentary Dataset 1. Other data supporting the findings of this manu-
script are available in the main text, and Supplementary
Information. Source data are provided with this paper.

Code availability
The computer code for statistics, global prediction and uncertainty
estimation used in this study has been deposited in the “Figshare” at
https://doi.org/10.6084/m9.figshare.27247668 (ref. 68).
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