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ABSTRACT

Wheat is a staple food formore than 35%of theworld’s population, withwheat flour used tomake hundreds

of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially

time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-

gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome

these barriers and efficiently identify superior wheat SSP alleles, we developed ‘‘PanSK’’ (Pan-SSP

k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses

29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity

across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP

genes associated with end-use quality that represent novel targets for improvement. We evaluated the ef-

fect of rye secalin genes on end-use quality and found that removal of u-secalins from 1BL/1RS wheat

translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based

prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes

alone. This study provides an effective approach for genome design based on SSP genes, enabling the

breeding of wheat varieties with superior processing capabilities and improved end-use quality.
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INTRODUCTION

Wheat (Triticum aestivum) is the third most highly produced sta-

ple crop worldwide, and its flour represents a valuable source

of carbohydrates, proteins, dietary fibers, and micronutrients

(Appels et al., 2018; Asseng et al., 2020). The global demand

for wheat continues to increase to meet the needs of 9.8 billion

people by 2050, and high end-use quality of wheat cultivars is a

prerequisite for the flour used to make hundreds of unique baked

goods (Tilman et al., 2011). End-use quality is closely linked to the

taste, texture, appearance, and shelf life of wheat-flour-based
1038 Molecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author.
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foods, and it ultimately determines overall consumer satisfaction.

Superior end-use quality therefore remains a major priority for

wheat breeders.

Improvement ofwheat end-use quality is a considerable challenge,

and achievements to date have failed to meet consumer demand

(Subedi et al., 2022, 2023) because quality-related traits are
ttp://creativecommons.org/licenses/by-nc-nd/4.0/).
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quantitative with low heritability and strong genotype–environment

interactions. Furthermore, direct measurement of quality traits is

time consuming and requires a large quantity of grain, expensive

trait-specific instruments, and an expert workforce (Mann et al.,

2009; Subedi et al., 2022). Thus, assessment of elite breeding

lines is typically delayed until advanced generations, and lines

with poor end-use quality are frequently discarded. This situation

has favored progress in improving other traits, such as grain

yield and disease resistance (Naraghi et al., 2019). Therefore,

an approach for highly accurate and efficient genotype-to-

phenotype prediction of end-use quality in earlier breeding

generations is needed. Such technology could enhance the

accuracy of selection and hasten wheat quality improvement.

Marker-assistedselection is a convenient, efficient, and fastway to

predict end-use-quality phenotypes in wheat breeding. Some

functional markers for genes have been used in early breeding

programs, includingPinb-D1a andPinb-D1a for grain texture/soft-

ness, Gpc-B1 for protein content, and Glu-A1 (Ax2, Ax1, and

AxNull subunits), Glu-B1 (Bx7OE), and Glu-D1 (Dx5+Dy10,

Dx2+Dy12) encoding high-molecular-weight glutenins (Subedi

et al., 2022). However, there are still few markers with high

prediction accuracy that are tightly linked to end-use quality in

wheat (Sandhu et al., 2022). To overcome this issue, genomic

selection can estimate breeding values using whole-genome-

wide markers to facilitate early-generation selection for end-use

quality (Battenfield et al., 2016). Michel et al. (2018) used

genomic selection to predict baking quality and reported an

acceptable prediction accuracy of 0.38–0.63 (Michel et al., 2018).

A number of genomic-selection studies for end-use quality traits

in wheat have been performed over the last decade, increasing

breeders’ confidence in this strategy (Plav�sin et al., 2021).

Seed-storage proteins (SSPs) in wheat grains, especially high-

molecular-weight glutenins (HMW-GS), low-molecular-weight

glutenins (LMW-GS), gliadins, and avenin-like proteins (ALPs),

play a crucial role in determining end-use quality because they

are responsible for dough elasticity and extensibility, essential

processing qualities for the production of a wide range of end

products (Rasheed et al., 2014; Luo et al., 2021). HMW-GS is en-

coded by three loci, Glu-A1, Glu-B1, and Glu-D1, which

contain two tightly linked genes for ‘‘x’’ and ‘‘y’’ type glutenin sub-

units at each locus. ‘‘Dx5+Dy10,’’ ‘‘Ax1,’’ and ‘‘Bx7+By8’’ have

positive effects on dough properties, resulting in good bread-

making quality (Payne and Lawrence, 1983; Shewry, 2003;

Ravel et al., 2006, 2020; Pirozi et al., 2008).

Markers for LMW-GS genes and one Gli-g1-I marker for the elite

g-gliadin allele are used in wheat breeding (Ikeda et al., 2006;

Wang et al., 2010; Liu et al., 2023). Although DNA-based markers

such asSNPs (single-nucleotide polymorphisms) andKASP (Kom-

petitive allele-specific PCR) markers can distinguish different poly-

morphism locations (Ravel et al., 2020), it remains challenging to

develop gene-specific markers for individual SSP genes because

they comprise multi-gene families and contain repetitive domains.

In addition, gaps in reference genomes on SSP-encoding loci are

widespread and limit the identification of variation. There is thus a

need for an SSP-based pangenome resource that fully captures

the bulk of SSP genetic diversity in wheat populations. This would

enable the identification of superior alleles to improve genotype-to-

phenotype prediction and, ultimately, end-use quality.
M

k-mers are short sequences with a fixed length, k, and can be ob-

tained from sequencing data or genome assemblies. They can

mark a broad range of polymorphisms independently of a refer-

ence genome (Voichek and Weigel, 2020). For example, k-mers

can be extracted from all sequence reads, and k-mer sets from

different samples can be compared. Importantly, k-mers that

are present in some samples but missing from others can

assist in identifying a broad range of genetic variants. k-mer-

based genome-wide association studies (GWASs) have been

widely used to identify genetic variants underlying phenotypic

variation in plants (Karikari et al., 2023). For example, k-mer-

based association mapping has been used to identify

candidate genes for disease and pest resistance from Aegilops

tauschii, the diploid wild progenitor of the D subgenome of

bread wheat (Gaurav et al., 2022).

In this study, we cataloged a wide range of genetic variation in

wheat SSP genes on the basis of k-mer analysis and identified

a set of SSP genes associated with variation in end-use quality.

We identified unique 29-mer sequences representative of genes

encoding wheat SSPs and developed a new analysis workflow,

PanSK, which we used to: (1) construct a comprehensive pres-

ence/absence-variation map of wheat SSP genes at the pange-

nome level; (2) perform GWAS analysis to identify candidate

SSP loci associated with end-use quality; and (3) exploit a

machine-learning approach based on PanSK to predict end-

use quality phenotypes with high accuracy. The results demon-

strate the power of PanSK to uncover novel targets for

genotype-to-phenotype prediction and more quickly advance

and rejuvenate interest in the improvement of wheat end-use

quality.
RESULTS

Identification of gapless SSP genes by long-read RNA
sequencing

Wheat SSPs are encoded by multi-gene families that show high

sequence similarity and contain long repetitive-sequence ele-

ments (Figure 1A), making it difficult to produce a complete and

errorless assembly of SSP genes through short-read sequencing.

For example, the Chinese Spring genome assembly IWGSCv1.0

predicts 85 annotated SSP genes, 31 of which contain gaps

(Figure 1B and Supplemental Table 1). Such gaps present a

barrier to comprehensive functional analysis and the study of

wheat end-use quality.

To overcome this barrier and obtain full-length and gapless

transcripts of SSP genes, we performed full-length isoform

sequencing (Iso-Seq) with PacBio long-read RNA-sequencing

technology using RNA extracted from the endosperm of wheat

cv. Nongda 3672 at 15 days after pollination (DAP). The average

transcript length reached 3 kb, sufficient to cover the entire open

reading frames of SSP genes (Figure 1A). We obtained 85 unique

full-length transcripts encodingSSPs, including 5HMW-GSgenes,

11 LMW-GSgenes, 57 gliadin genes, and 12ALP genes (Figure 1C

and Supplemental Table 2). In genomes assembled by short-read

sequencing, such as ArinaLrFor, Jagger, Mace, and Norin 61,

most HMW-GS sequences contain gaps (Supplemental Figure 1).

However, these gaps can be successfully bridged with Iso-Seq

data (Supplemental Figure 1 and Supplemental Table 3). The
olecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author. 1039
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Figure 1. Isoform sequencing (Iso-Seq) fills gaps in transcripts encoding seed-storage proteins.
(A) Schematic of major wheat SSPs and their respective domain structures.

(B) Top: summary of incomplete SSP gene annotations in the cv. Chinese Spring genome version 1 (IWGSCv1.0) assembly obtained by short-read

sequencing. Bottom: a partial Gli-u-1D-3 sequence, in which ‘‘NN’’ represents gaps in IWGSCv1.0 that were filled by Iso-Seq.

(C) Neighbor-joining tree of annotated SSPs in wheat and rye constructed from 649 sequences. Branch length represents log2 genetic distance

determined by ClustalW. Full-length transcripts identified in Nongda 3672 are marked with asterisks.

(D) SMRT-seq for RNA sequencing (cv. Nognda3672) can fill in all gaps in SSP transcripts arising from sequencing strategies. Each bar represents a

wheat variety used for scanning HMW-GS genes, including hexaploid wheat (AABBDD), tetraploid wheat (AABB), diploid Triticum urartu (AA), diploid

Aegilops tauschii (DD), and diploid Secale cereale (RR).
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u-gliadin gene TraesCS1D02G002063, which contains one gap

in the IWGSCv1.0 assembly (International Wheat Genome

Sequencing Consortium, 2018), was filled here by Iso-Seq data

with a length of 498 bp (Figure 1B). Intriguingly, benchmarking

confirmed that the Iso-Seq assembly contained more full-length

SSP genes than published wheat reference genomes assembled

using short-read sequencing, such as cv. ArinaLrFor, Jagger,

and Julius, and was comparable to genomes assembled with

long-read sequencing, such as cv. Fielder and CS-IWGSCv2.0

(Figure 1D). Thus, integration of transcripts assembled by long-

readRNA sequencing has the potential to provide amore accurate

and comprehensive catalog of wheat SSPs.

Nevertheless, Iso-Seq remains costly and currently lacks the

sensitivity to assemble transcripts with low expression (Figure

1D), which limits its present utility for investigating copy-
1040 Molecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author.
number variation and sequence polymorphisms at the population

level. By integrating full-length SSP sequences obtained by Iso-

Seq with sequences from the National Center for Biotechnology

Information (NCBI) (Supplemental Table 4), we developed a k-

mer-based method to establish an SSP-based pangenome in

wheat. Such a strategy is effective for discovering R genes

without mapping (Arora et al., 2019).
Establishment and evaluation of the k-mer-based
pipeline PanSK

We aimed to identify the k-mers unique to each SSP gene, thus

enabling fast and accurate determination of genetic variation,

including presence/absence variations and nucleotide polymor-

phisms, by direct scanning of sequencing reads. We developed

a k-mer-based pipeline, which we named PanSK, for detecting

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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wheat SSPs at the pangenomic level by scanning raw sequencing

reads. The PanSK workflow has three main steps (Figure 2A).

In step 1, we collected 649 SSP gene sequences at the pange-

nomic level from multiple resources: 515 annotated genes from

20 Triticeae genome assemblies, 125 genes derived from Iso-

Seq data collected from cv. Nongda 3672 and the cultivated va-

riety Xiaoyan 81 (Wang et al., 2017), and nine published SSP

sequences obtained via Sanger sequencing (Supplemental

Table 5). All genes with a sequence similarity greater than 99%

were grouped together, and the longest sequence from each

set was chosen as the non-redundant representative SSP

(rSSP) (Supplemental Table 4), for a total of 139 rSSP sets.

In step2,weperformedmultiple testswithdifferent k-mer sizes (k=

17, 19, 21, 23, 25, 27, 29, 31, 33) to determine the optimal k-mer

size. We generated k-mers from each SSP gene to identify unique

hits across the entire genome. A value of k = 29 was sufficient to

identify unique k-mers for all 139 SSP genes (Supplemental

Figure 2A–2C). Further increases in k-mer size did not lead to

significant improvements in SSP gene identification but did

significantly increase computational costs. Thus, we selected k =

29 for k-mer size. Finally, a total of 40 453 unique 29-mers uniquely

representing all the 139 rSSPs were identified.

In step 3, PanSK was developed to scan raw resequencing reads

and infer SSP variants as represented by unique k-mers. The

presence/absence of SSP genes was estimated by the relative

ratio of scanned unique k-mers representing each SSP gene.

PanSK thus detects presence/absence variation in wheat SSP

genes without mapping of reads to a reference genome.

To evaluate the performance of PanSK on calling SSP presence/

absence variations, we scanned SSP-specific k-mers in rese-

quencing data from 11wheat varieties. These sourceswere either

randomly sampled sequence data or simulated short-read

sequence data from assembled genome sequences, including

those of Chinese Spring, ArinaLrFor, Jagger, Lancer, Landmark,

Mace, Norin 61, Spelt, Stanley, and SY Mattis. By comparison

with the annotated SSPs in these assemblies, the simulated

data demonstrate that the k-mer detection rate for SSP genes in-

creases with sequencing depth. The distributions of the k-mer

detection rate for absent and present SSP genes were distin-

guishable even at a read depth of 13 (Figure 2B), indicating

that the detection rate of k-mers can serve as a reliable

indicator for inferring the presence/absence of these genes.

Furthermore, we evaluated PanSK detection power at different

sequencing depths and showed that a sequencing depth of 43
Figure 2. The k-mer-based algorithm PanSK identifies presence/ab
mapping.
(A) Overview of the PanSK pipeline for pan-SSP map construction and its ap

genome scale, and 139 non-redundant representative SSPs (rSSPs) were id

senting rSSPs were identified. Step 3: presence/absence variations in SSP g

without read mapping.

(B)Detection ratio of k-mers used to infer presence/absence variations in SSP

coverages from 13 to 83 in two scenarios (SSP absent or SSP present) were

(C) F scores for inference of SSP presence/absence variation from resequenci

the simulation.

(D) PanSK with resequencing data identifies more SSPs compared with gen

identified in cv. Chinese Spring are boxed.

1042 Molecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author.
is adequate for accurately determining the presence or absence

of SSP genes and that further increases in sequencing depth do

not significantly improve the F score (Figure 2C).

We next evaluated the performance of PanSK in gene assembly

from re-sequencing data by comparing its results with assem-

bled genes from the 11 genomes. PanSK identified more SSPs

directly from resequencing data compared with genomes assem-

bled from either short reads or long reads (Figure 2D and

Supplemental Table 6). For example, PanSK identified more

SSP genes using resequencing data from cv. Chinese Spring

compared with the number assembled in both the IWGSCv2.0

(long-read) and IWGSCv1.0 (short-read) assemblies. Specifically,

23 predicted a-gliadin genes were identified by PanSK from rese-

quencing data, 16 of which were annotated in IWGSCv1.0 and

eight of which were annotated in IWGSCv2.0. For genes encod-

ing u-gliadins, 14 Gli-u genes were predicted by PanSK, but

these loci were poorly assembled in both IWGSCv1.0 and v2.0.

In addition, PanSK was highly effective in addressing the issue

of misassembled genes. For instance, TraesCS1B02G329711

in IWGSCv1.0 and TraesCS1B03G0904700 in IWGSCv2.0

were annotated as encoding HMW glutenin 1Bx, and both

sequences were misassembled relative to the PanSK-assembled

sequence, with a gap between 664 bp and 2028 bp

(Supplemental Figure 2D). Some SSP genes are partially

assembled in both IWGSCv1.0 and v2.0, and the unassembled

regions represented by NNNs can be filled using PanSK

(Supplemental Figure 2E). These results demonstrate the power

and practicality of PanSK for exploration of polymorphisms in

SSP genes across wheat varieties.

PanSK is not only capable of identifying SSP genes using rese-

quencing data; the k-mer-based strategy can also be used for

additional purposes, including (1) reassembly of novel SSP alleles

by overlapping corresponding k-mers, (2) construction of a

presence/absence-variation fingerprint map of SSP genes in

large populations, (3) association analysis and discovery of func-

tional SSP alleles associated with wheat end-use quality, and (4)

assistance with phenotype prediction (Figure 2E). Therefore, the

k-mer-based pipeline used by PanSK to identify SSP genes has

advantages over traditional assembly methods and could serve

as a scalable approach to evaluate wheat SSP genes in large

populations.
Fingerprint mapping of SSP genes using PanSK

Wheat SSP composition is commonly characterized by reverse-

phase high-performance liquid chromatography or SDS–PAGE,
sence variations in SSPs with high sensitivity and without

plications. Step 1: SSPs were collected from multiple sources at a pan-

entified and assigned unique IDs. Step 2: k-mers (k = 29) uniquely repre-

enes were inferred from the k-mer detection ratio in resequencing reads

genes from resequencing data. Simulated resequencing data with different

used for evaluation.

ng data at different depths. Eighteen assembled accessions were used for

ome assemblies obtained from long reads and short reads. SSP genes



D
en

si
ty

SSP counts

0

0.1

0.2

10 20 30

Presence Absence

0
6

0
3

0
4

0
4

0
3

ALP

Percentage of ac

LMW-GS

cession

A

s

CB

0.3

3

0
0 75%50% 100%

HMW-GS

0.4

0

ALP

LMW-GS

HMW-GS

CultivarLandrace

ALP

LMW-GS 10000

20000

30000

40000

Cultivar-Pan

Cultivar-Core
Landrace-Core

Landrace-Pan

50 100 150 200

K
-m

er
 c

ou
nt

s

Accession counts

N = 22

N = 52

Liangxing 99 Ningchun 4

Huoliyan Tutoumai
Cultivar

Landrace

1B

#3

Huoliyan Liangxing 99

1912 32

CultivarLandraceD E F

HMW-GS

+5.9%

+10.7%

+24.6%

#2

#3

2#

0 1

SD = 3.5

SD = 2.3

SD = 2.4SD = 2.4

SD = 1.2

SD = 2.4

CoreCommonSpecialised Dispenasbale

SSP counts

G
**

50

75

SS
P 

co
un

ts

100

125

25

(30%)

ALP

LMW-GS

HMW-GS
25%

0 10
Gli-ω locus

SS
P 

C
ou

nt
s

20 30 40 Gli-γ locus

(19%)(51%)

66 706 670
(7%) (85%)(7%)

Gli-ω

Gli-γ

Gli-α

Gli-ω

Gli-γ

Gli-α

Gli-ω

Gli-γ

Gli-α

Gli-ω

Gli-γ

Gli-α

*
*

*

Figure 3. A pan-SSP presence/absence-variation map decodes genetic diversity and selection patterns for wheat SSPs.
(A) Presence/absence-variation profiles for SSPs across 365 wheat accessions. Each row represents an individual SSP gene, and each column rep-

resents an accession. Presence frequencies are shown in the rightmost track. SSP genes were ranked in decreasing order of presence frequency within

each SSP class.

(B) Distribution of SSP gene counts across 365 accessions. Each SSP class is profiled individually.

(C) Population-scale distribution of presence frequencies. Each SSP class is profiled individually. SSPs with presence frequencies >0.95 were classified

as core SSPs, those with presence frequencies%0.95 andR0.8 as common SSPs, those with presence frequencies <0.05 as specialized SSPs, and the

rest as dispensable SSPs.

(D) Comparison of SSP gene presence in landraces versus cultivars. Left: total number of SSP genes in each wheat accession. Right: further subdivision

of the SSP genes into Gli-a, Gli-g, Gli-u, ALP, LMW-GS, and HMW-GS classes. Statistical significance was assessed by t-tests. *p% 0.05; **p% 0.01.

The proportions of increase in SSP gene presence from landraces to cultivars are labeled.

(E)Pangenome estimation of k-mer counts in landraces and cultivars. The pan- and core-curves are shown as the union and intersection of k-mers across

the varieties in each group. The dashed lines indicate the numbers of SSP genes where the curves cross.

(F) Venn diagram of overlapping SSPs between the landraces Huoliyan and Tutoumai and between the cultivars Liangxing 99 and Ningchun 4.

(G) Comparison of Huoliyan and Liangxing 99 in Gli-g and Gli-u loci on chromosome 1B.
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but insight into the distribution of individual peaks or bands for

particular proteins is still lacking. Thus, it is challenging to identify

precise protein markers or patterns that can reliably predict end-

use quality. We aimed to establish gene fingerprints for SSP

genes in wheat genotypes.

Using PanSK, we built an SSP gene fingerprint map by deter-

mining presence/absence variations for 139 genes across a

diverse panel of 365 resequenced wheat accessions, including

139 landraces and 226 modern cultivars (combining published

[Guo et al., 2020; Hao et al., 2020; Zhou et al., 2020] and

unpublished data) (Figure 3A and Supplemental Table 7). The

number of predicted SSP genes varied extensively among

varieties, with a-gliadins ranging from R10 to %30 members in

individual accessions (Figure 3B).

Using the category nomenclature proposed by Liu et al. (2020),

eight of the 139 wheat SSPs were present in 346–365

accessions (>95% of the collection) and were defined as core
M

genes, 26 were present in 292–345 accessions (80%–95% of

the collection) and were defined as common genes, 76 were

present in 18–291 accessions (5%–80% of the collection) and

were defined as dispensable genes, and 29 were present in 0–

17 accessions (<5% of the collection) and were defined as

specialized genes (Figure 3C and Supplemental Table 4).

u-Gliadin genes had the highest proportions of specialized and

dispensable genes (95%), reflecting their variability. Because

dispensable genes are typically found as tandem duplicates

(Yocca and Edger, 2022), the higher variable counts of gliadin

genes at the population level contribute to the underlying

genetic plasticity of wheat end-use quality.

Numbers of SSP genes were significantly higher in cultivars

(mean = 75.45) than in landraces (mean = 70.61, p = 3.04 3

10�6). This enrichment was mainly due to gliadins, with 5.9%,

10.7%, and 24.6% more a-, g-, and u-gliadin genes, respec-

tively, in cultivars than in landraces (Figure 3D). To understand

the relationship between diversity and abundance of SSP
olecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author. 1043
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genes during wheat breeding, we generated a saturation curve of

the present SSP genes (Supplemental Figure 3) and SSP-specific

k-mers (Figure 3E) along with the increase in pangenome size for

both landrace and cultivar groups. When there were only a few

accessions (n < 52), the landrace group had fewer pan-SSP

k-mers than the cultivar group, consistent with the accumulation

of SSP genes in modern wheat cultivars (Figure 3E). Similar

results were observed for the saturation curve of present pan-

SSP genes, with the switching point at n = 137 (Supplemental

Figure 3). By contrast, when the population size was large

enough (i.e., n > 52), the landrace group had more pan-SSP

k-mers than the cultivar group, indicating that wheat landraces

have more diverse SSP classes at the population level. Thus,

through breeding, SSPs in cultivars have increased in number

but decreased in diversity. For example, the landraces Huoliyan

and Tutoumai contain 44 and 51 SSP genes, respectively, and

only 32 are shared. By contrast, cultivars Liangxing 99 and Ning-

chun 4 both contain 76 predicted SSP genes, 70 of which are

shared (Figure 3F). At the gliadin gene locus on chromosome

1B, Huoliyan contains only one predicted g-gliadin gene and

u-gliadin gene, whereas Liangxing 99 contains four g-gliadin

and six u-gliadin genes (Figure 3G).

To understand how breeding has shaped the SSP repertoire

at the population level, we identified 29 and 20 SSP genes

that were highly enriched in cultivars and landraces, respectively

(Supplemental Figure 4 and Supplemental Table 4). For example,

the elite HMW-GSs Dx5+Dy10 and Bx14+By15, which contribute

to superior end-use-quality (Guo et al., 2020; Zhou et al., 2021),

are highly enriched in the cultivar group (Supplemental

Figure 4), suggesting that SSP genes have been pyramided in

cultivars through artificial selection. This result also highlights

the fact that wheat landraces harbor high diversity in SSP

genes that remains underexploited in modern cultivars.
k-mer-based genome association reveals elite SSP
alleles for wheat end-use-quality improvement

To identify elite SSP genes associated with end-use quality, we

performed k-mer-based association analysis using a collection

of wheat accessions with known SDS-sedimentation values

(SDS-SVs), an indicator of end-use quality (Supplemental

Table 8). Considering the major impact of the 1Dx+1Dy subunit

pair of HMW-GSs and secalin proteins (in wheat-rye 1BL/1RS

translocation lines) on quality (Niu et al., 2011; Guo et al., 2013;

Chen et al., 2021), we selected 103 non-1BL/1RS translocation
effects. Dashed lines mark thresholds for statistically significant associations.

associated with end-use quality are marked with an asterisk. Un: the chrom

located on unassembled contigs).

(B) Standardized SDS-SV (standardized SDS-SVhaplotype i = themean SDS-SV

23 SSP genes significantly associated with quality as determined from k-mer

lotypes with standardized SDS-SV R0.2 or %�0.2 are displayed. The enrich

evaluated. Haplotypes with a proportion greater than 75% in cultivated varietie

greater than 75% in landraces were defined as ‘‘enriched in landraces.’’

(C) Comparison of SDS-SVs among Gli-g-1B-3 haplotypes. Three biological re

determine the significance of differences between two groups. **p % 0.01; **

(D) Distribution of the three Gli-g-1B-3 haplotypes in landraces and cultivars.

(E) The Gli-g-1B-3 coding sequence reassembled by PanSK enables identific

hap3 is highlighted in red.

M

wheat varieties carrying identical HMW-GS types (Dx2+Dy12)

for association analysis.

A total of 336 k-mers from 23 SSP genes were significantly

associated with SDS-SV (|association score| R 7, p < 1 3

10�7), including one allele encoding HMW-GS 1Ax, four genes

each for LMW-GS and a-gliadin, eight g-gliadin genes, and

six u-gliadin genes (Figure 4A and Supplemental Table 9).

Three of these SSP genes are known to play roles in end-use

quality, including an HMW-GS gene (TraesCS1A02G317311)

(Zhou et al., 2021) and two g-gliadin genes, Gli-g-1D-3

(TraesFLD1D01G005600) (Liu et al., 2023) and Gli-g-1B-4

(TraesFLD1B01G010600) (Liu et al., 2023). The remaining 20

SSP genes represent novel candidates for end-use quality.

Next, we queried variation in these 23 SSP genes by distinguish-

ing their haplotypes with k-mers. Sixty-three haplotypes,

including nucleotide polymorphisms and presence/absence var-

iants, were identified (Figure 4B). Thirty-one haplotypes showed

positive effects on SDS-SV, and 23 haplotypes showed

negative effects (Figure 4B). To understand the spread of these

haplotypes during breeding, we compared the percentage of

each haplotype between cultivars and landraces by introducing

a breeding-selection score (BSS) for each haplotype. Five haplo-

types associated with high SDS-SV were enriched in cultivars,

indicating that they had been selected during breeding for

end-use-quality improvement (Figure 4B). Four haplotypes

associated with low SDS-SV were enriched in landraces,

indicating that these genes may have been discarded during

breeding (Figure 4B). Another 25 haplotypes associated with

high SDS-SV have not been selected during modern breeding

(Figure 4B and Supplemental Table 10) and represent novel

candidates for future improvement.

Different haplotypes (denoted by the superscript ‘‘h’’) of the same

SSP gene often show opposite effects on end-use quality, high-

lighting the importance of selection of elite haplotypes using

PanSK. For example, Gli-g-1B-3 (encoding a g-gliadin) has three

haplotypes: Gli-g-1B-3h1, Gli-g-1B-3h2, and Gli-g-1B-3h3. Acces-

sions with haplotype Gli-g-1B-3h2 or Gli-g-1B-3h3 have higher

SDS-SVs than those with Gli-g-1B-3h1(Figure 4C). The Gli-g-1B-

3h2 and Gli-g-1B-3h3 haplotypes represent the major alleles (34%

and 63%) in cultivars, and Gli-g-1B-3h3 haplotype frequency is

higher in cultivars than in landraces, indicating that Gli-g-1B-3h3

has been selected (Figure 4D). Gli-g-1B-3h1 haplotype frequency

is lower in cultivars than landraces, indicating loss (Figure 4D). To

compare sequence variation among the three Gli-g-1B-3
IDs of genes identified with high confidence are shown, and known genes

osomes on which the SSP genes are located are unknown (i.e., they are

of accession with haplotype iminus themean SDS-SV of all accessions) of

haplotype-partitioning results and breeding-selection signals. Only hap-

ment levels of each haplotype in landraces and cultivated varieties were

s were defined as ‘‘enriched in cultivars,’’ whereas those with a proportion

plicates were quantified for each accession. Student’s t-test was used to

*p % 0.001.

ation of SNPs from three haplotypes. A C/T polymorphism in hap2 and

olecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author. 1045



γ-secalin 6

0 500 1000

0 250 500 750

500 750

0

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Position (bp)

B

R
at

io
R

at
io

R
at

io
R

at
io

R
at

io

2500

D

R = 0.32
= 0.035

Rye

Wheat 1BL/1RS

××××

Active gene

ω-secalin 4

Pseudogene

γ-secalin 10

ω-secalin 2 ω-secalin 3

1R

Sec-1 Sec-4

A

ZhouMai 18
ZhouMai 30

Shan 627

E

p

25

50

75

100

20 25 30

~ 1980
1980 ~ 1990

25

50

75

100

125

~
1980

1980 1990 Post 
2020

ω
-s

ec
al

in
 4

 k
-m

er
 c

ou
nt

s

1990 ~ 2000 Post 2020

C

~
20001990

~

ω
-s

ec
al

in
 4

ZhengMai 1860
ZhouMai 30

γ-secalin 10

ω-secalin 2

ω-secalin 4

ω-secalin 3

-

0 500 1000250 750

200 400 600 800

SDS-SV

ω
-s

ec
al

in
 4

 k
-m

er
 c

ou
nt

s

1B

γ-secalin 6

Figure 5. Identification of 1BL/1RS-translocation-specific k-mers and secalin genes and their association with end-use quality.
(A) Structure of Sec-1 and Sec-4 loci on chromosome 1R and certain secalin genes introduced to wheat chromosome 1B. Known secalin genes

associated with the four loci are labeled.

(B)Conservation of secalin k-mers in selected secalin genes. Each lollipop signifies a k-mer, with the x axis indicating the k-mer position in each gene and

the y axis indicating the ratio of k-mer presence in all 1BL/1RS translocation varieties.

(C) Secalin k-mer loss profile in 1BL/1RS translocation lines. Accessions were ordered by decreasing counts of secalin k-mers.

(D) Number of secalin k-mers in cultivars that contain the 1R chromosome across different time periods.

(E) Correlation between secalin k-mer counts and sedimentation values across 1BL/1RS translocation lines in wheat accessions. The black line denotes

the line of best fit.
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haplotypes, we reassembled their complete coding sequences

using k-mers. Gli-g-1B-3h1 and Gli-g-1B-3h2 differ by 19 SNPs,

whereas Gli-g-1B-3h2 and Gli-g-1B-3h3 differ by only one SNP

(Figure 4E). Compared with Gli-g-1B-3h1, both Gli-g-1B-3h2/3

have a C/T change 277 bp downstream of the translation start

site, resulting in a premature termination codon. These results

suggest that loss-of-function alleles of Gli-g-1B-3 contribute to

improved wheat end-use quality.
Revealing genetic variation in secalins of wheat-rye
1BL/1RS translocation lines using PanSK

In wheat-rye 1BL/1RS translocation lines, the short arm of rye

chromosome 1RS replaces the short arm of wheat chromosome

1B (1BS) (Lee et al., 1995), and these lines are used worldwide

because of their disease resistance and superior grain yield
1046 Molecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author.
(Zhao et al., 2012). However, this translocation has deleterious

effects on bread-baking quality (Supplemental Figure 5)

(Heslop-Harrison et al., 1990; Li et al., 2021) owing to the

introduction of rye secalin genes (encoding storage proteins) on

1RS and the loss of gliadins and LMW glutenin genes (Shewry

and Bechtel, 2001). Breeding high-yielding, superior-quality elite

varieties by regulating secalins in 1BL/1RS to increase grain qual-

ity and yield represents a useful strategy. Using PanSK, we de-

tected variation in secalin genes to identify rational targets for

improvement of end-use quality.

The assembled 1BL/1RS genome carries the Sec-1 locus,

which contains g-secalin 6 (representing g-secalin 5, g-secalin

7, g-secalin 8, and g-secalin 9), u-secalin 2, and u-secalin 3,

and the Sec-4 locus, which contains two active secalin genes,

g-secalin 10 and u-secalin 4 (Figure 5A) (Shi et al., 2022). Using
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PanSK, we identified k-mers unique to these secalins in order to

catalog secalin variation in 77 1BL/1RS translocation lines

released during the last 40 years (Supplemental Table 11). The

representative k-mers specific to secalin genes of rye

provenance were highly enriched in 1BL/1RS translocation lines

and absent in non-1BL/1RS lines (Supplemental Figure 6). The

genes g-secalin 6, g-secalin 10, u-secalin 2, and u-secalin 3

were highly conserved with low diversity among 1BL/1RS

varieties, indicating their narrow origins from rye (Figure 5B). On

average, 34.5% of u-secalin-4-specific k-mers could not be

detected in 1BL/1RS lines, indicating that u-secalin 4 may have

been mutated or eliminated during breeding.

Presence/absence variation for u-secalin-4-specific k-mers indi-

cated that this gene was gradually eliminated during breeding, a

result supported by the gradual reduction in these k-mers in vari-

eties released from the 1980s to 2020, with superior-quality elite

varieties Zhengmai 1860 and Zhoumai 30 containing the fewest

k-mers (Figure 5C and 5D). There was a significant negative

correlation (r = �0.32, p = 0.035) between k-mer counts for

u-secalin 4 and SDS-SV (Figure 5E), indicating that elimination

of u-secalin 4 has a positive effect on end-use quality. Together,

these results reveal that modern breeding has gradually removed

u-secalins on 1RS to improve end-use quality.
Genotype-to-phenotype prediction by PanSK
accelerates selection efficiency for improvement of
wheat end-use quality

The k-mers identified by PanSK can fully capture presence/

absence variations and alleles of SSP genes, which have been

challenging to genotype by traditional strategies based on SNP

arrays or SNP calling. We therefore aimed to develop a k-mer-

based prediction model for genotype-to-phenotype prediction

and assessed the contribution of each SSP gene to end-use qual-

ity. We then proposed an ideal combination of SSP genes that

would contribute to end-use-quality-related traits. For a training

population, we randomly selected 1000 non-redundant k-mers

as the initial candidate set. Next, we used a random-forest-

based model with presence/absence-variation profiles of k-

mers as the genotypes and SDS-SV as the phenotype to train
(B) Pearson correlation coefficient between predicted and observed phenotyp

best predictive performance from the leftmost k-mer, starting with 1 k-mer. T

(C) Density plots for prediction accuracy of KPPer performance evaluated by

was calculated for each fold, and coefficients were then averaged over 10 fold

y = x, and the red line indicates the orthogonal distance regression line fitted

(D)Heatmap of presence/absence-variation status of 90 k-mers used in this stu

effect of each k-mer. Dashed boxes in red and blue indicate accessions show

and blue represent k-mers that make positive and negative contributions to SD

of positive- and negative-effect k-mers in the high and low SDS-SV accessio

(E)Workflow for end-use-quality breeding in wheat. First, elite germplasm reso

of KPPer predictions (varieties with more positive-effect k-mers have superio

inferior quality performance). Second, elite individual plants are selected afte

parental lines, such as the F2 population. For individual plants in the F2 popula

and low-throughput resequencing are performed on the offspring population d

k-mers of SSP genes are selected for the next generation. Finally, homozygou

prediction efficiency, it will be necessary to combine double-haploid technolo

(F) k-mer composition and SDS-SVs of the parent strains Nongda 3097 and

k-mer, and cross-hatching represents k-mers that differ between Nongda 309

displayed.

(G) k-mer composition and SDS-SV performance of five recombinant inbred
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the model. We opted for a greedy strategy to prioritize key

k-mers by selecting candidates from the fewest k-mers with the

best prediction performance each time, starting from one k-mer

(Figure 6A). Use of 90 k-mers was sufficient to reach a stable

Pearson correlation coefficient of 0.64 (Figure 6B). We thus

developed an end-use-quality predictor, which we named

‘‘KPPer’’ (k-mer-based phenotype predictor), using genetic vari-

ation of 90 selected k-mers as the genotype (Supplemental

Table 12).

To test the predictive power of KPPer, we predicted the end-use-

quality performance of 172 wheat varieties and measured their

SDS-SVs. Performance was evaluated by adapting a 10-fold

cross-validation approach. We obtained a correlation of 0.64 be-

tween predicted and observed SDS-SVs (Figure 6C). Accessions

with higher SDS-SVs (i.e., the top 30%) carried more k-mers that

made a positive contribution to end-use quality, whereas acces-

sions with the lowest SDS-SVs (the bottom 30%) carried fewer

such k-mers (Figure 6D). These results highlight the power of

PanSK-derived k-mers to accurately predict end-use-quality

traits and facilitate selection of breeding lines with high

estimated SDS-SVs to promote trait improvement.

KPPer can predict phenotype from genotype, thus mitigating

the limitations of traditional phenotyping methods and showing

potential for use in breeding. Here, we propose a new breeding

strategy that makes use of PanSK for end-use-quality imp-

rovement (Figure 6E). First, elite germplasm resources

containing elite SSP genes are selected as parental lines.

Second, individual elite progeny are selected after genotype-

to-phenotype prediction at an early stage (e.g., in the F2
population). For individual plants in the F2 population, end-use-

quality performance is predicted by KPPer, and elite individuals

carrying more SSP genes with positive effects on end-use quality

are selected for the next generation. Finally, homozygous lines

are selected at the F3 or F4 generation. By detecting the compo-

sition of different k-mers in different varieties, we can select suit-

able parental combinations that complement each other in order

to aggregate k-mers with positive effects on quality and exclude

k-mers with negative effects. This approach is expected to create

new high-quality varieties.
es. Key k-mers were prioritized by selecting the candidate k-mer with the

he thin blue line denotes the line of best fit.

adapting a 10-fold cross-validation approach. The correlation coefficient

s. Contour lines indicate kernel density. The black line shows the function

from contour lines.

dy for SDS-SV prediction across 172 accessions. The color represents the

ing higher (top 30%) and lower (bottom 30%) SDS-SVs, respectively. Red

S-SV, respectively. The bar charts at the bottom show the average number

ns.

urces containing elite SSP genes are selected as parental lines on the basis

r quality performance, and those with more negative-effect k-mers have

r genotype-to-phenotype prediction from early-stage offspring of the two

tion, end-use-quality performance is predicted by KPPer. DNA extraction

uring the juvenile phase, and elite individuals carrying more positive-effect

s lines are selected at the F3 or F4 generation. In the future, to achieve high

gy with genomic selection to create genetically uniform lines.

Lunxuan 987 used for hybridization. Colors represent the effects of each

7 and Lunxuan 987. k-mers specific to Nongda 3097 and Lunxuan 987 are

lines generated from Nongda 3097 and Lunxuan 987.
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To validate this strategy, we used recombinant inbred lines (RILs)

obtained from a Nongda 3097 3 Lunxuan 987 cross to test the

genotype-to-phenotype predictions. Nongda 3097 has a higher

SDS-SV (observed = 25.0 ml, predicted = 24.90 ml) and carries

six special negative and 14 positive k-mers. Lunxuan 987 has a

lower SDS-SV (observed = 15.4 ml, predicted = 20.49 ml) and

carries 11 special k-mers with negative effects on SDS-SV and

two with positive effects (Figure 6F). In the RIL population, we

analyzed k-mers in each line to identify the pyramiding of

positive k-mers. RILs, such as types 1, 2, and 3, which contain

13, 14, and 15 k-mers with positive effects and 3, 4, and

10 k-mers with negative effects, respectively, have higher SDS-

SVs (Figure 6G). By contrast, types 4 and 5, which contain only

2 and 1 k-mers with positive effects, have lower SDS-SVs. We

obtained 15 lines that pyramided more k-mers with positive

effects and had higher SDS-SVs (Supplemental Table 13).

These results confirm the power of KPPer in genotype-to-

phenotype prediction for end-use quality.

DISCUSSION

Improving the quality of wheat is often time consuming, and

phenotypic evaluation is expensive, requiring large numbers of

grains for an inefficient process (Prasad et al., 2003; Yang

et al., 2020; Cao et al., 2024). In contrast to conventional

breeding, which relies on phenotype-based evaluation, we pro-

pose a rational genome-design approach based on k-mers

from SSP genes to facilitate the production of wheat varieties

with superior end-use quality.

To realize this goal, it is first necessary to evaluate the contribu-

tion of each SSP gene to end-use quality, a task that has histor-

ically been challenging owing to the repetitive nature of SSP

genes. To begin, it is important to differentiate individual SSP

genes from among several copies, as they each contribute to

functional variation (Niu et al., 2011; Guo et al., 2013; Clavijo

et al., 2017; Chen et al., 2021). Our study shows that a k-mer

approach is effective for analyzing multi-copy SSP gene

families in wheat. This new approach overcomes challenges

posed by the repetitive nature of SSP genes because it exploits

the unique sequences present in repetitive regions. Using k-

mers, we were able to efficiently identify and quantify the copy-

number and sequence variation of multi-copy genes encoding

gliadins and HMW and LMW glutenins. We observed that land-

races had fewer SSPs but higher SSP diversity, whereas cultivars

had more SSP copies but lower diversity (Figure 3D–3G).

Landraces, shaped by natural and low-intensity artificial selec-

tion, maintain diverse genetic reservoirs. By contrast, cultivated

varieties, shaped by intense artificial selection for specific traits,

exhibit narrower genetic diversity. In addition, the breeding pro-

cess often involves repeated crossing of a relatively small number

of elite parental lines, which leads to reduced genetic diversity.

SSP genes are present in multiple copies, and multi-copy genes

are known to play an important role in the adaptability and evolu-

tion of organisms. Increased copy numbers of SSP genes may

arise through various mechanisms, such as unequal crossing

over, retrotransposition, or segmental duplication during

breeding. The occurrence of multiple SSP gene copies in culti-

vars may contribute to a higher gluten content and a diversity

of gluten proteins. These features make wheat more suitable for

industrial food production.
M

We showed that a k-mer approach is a valuable method for

exploring the structural and functional diversity of SSP families

at a granular level. It can be particularly useful for investigating

multi-copy gene families and their sequence variability, while

providing insights into their evolutionary dynamics and functional

implications.

k-mer-based GWAS enabled the exploration of associations

between k-mer patterns and phenotypic traits for end-use

quality and thus captured a broader range of variation in SSP

genes. Combinations of specific subunits such as Dx5+Dy10,

Bx7+By8, Bx14+By15, and the elite g-gliadin allele Gli-g1-I are

associated with improved dough properties (Tanaka et al.,

2003; Delorean et al., 2021; Yang et al., 2023). However, the

contributions of LMW-GS and other gliadin genes remain less

clear. As a result, wheat-cultivar improvement based on LMW-

GS and gliadins has enjoyed comparatively limited success to

date. After performing a k-mer GWAS, we identified 23 SSP

genes, including 18 genes encoding gliadins, four encoding

LMW glutenins, and one encoding HMW glutenin, as candidates

for wheat end-use quality improvement. We also determined the

contribution of each gene’s genetic variation to end-use quality.

This study provides additional avenues for optimizing wheat

end-use quality using LMW-GS and gliadins in the future.

Using PanSK, we developed a novel breeding approach that uses

genome design to facilitate pyramiding of genes related to end-

use quality. In wheat breeding, genotype-to-phenotype pre-

diction for quality improvement can be used to guide selection

decisions and improve breeding efficiency (Naraghi et al., 2019;

Sandhu et al., 2021). Genomic selection allows for the end-use-

quality evaluation of individual plants at an early stage

before they express their phenotypes in full (Gill et al., 2023).

This accelerates breeding, reduces phenotyping costs, and

increases selection accuracy. However, because individuals

are heterozygous at early stages of phenotype prediction, the

accuracy of prediction is limited. These individuals must be

homozygous for an additional generation of self-pollination. In

the future, to achieve high prediction efficiency, it will be neces-

sary to combine double-haploid technology with genomic selec-

tion to create genetically uniform lines. Because the interaction

between genotype and environment plays a substantial and often

unpredictable role in wheat breeding, the performance of a geno-

type can vary widely across different environments (Li and Tao,

2022). Thus, PanSK can be improved by combining predictions

from multiple environments, which will require sufficient data

from such environments.

Although this study provides an effective approach for genome

design based on selection of SSP genes, certain limitations

remain. We did not consider non-SSP genes, such as transcrip-

tion factors that regulate SSP genes, which also inevitably

contribute to end-use quality. Pyramiding multiple elite SSP

genes requires a large selection population for genotyping by

k-mers. If more parents for double-crossing are selected, the

strategy becomes more complex, and a much larger selection

population will be needed. Furthermore, it is essential to balance

end-use quality with other traits such as yield and resistance

(Song et al., 2022). Our results demonstrate that scanning the

PAV status of a limited number of representative k-mers can

enable high prediction accuracy. It would be practical to design
olecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author. 1049
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key parent-specific markers for assessing quality potential by

scanning F2 populations in a cost-efficient manner. Moreover, it

would be wise to use these key markers to design a low-cost

customized breeding chip, such as a liquid chip, that captures

low-throughput sequencing data for genotyping SSP genes.

We anticipate that this will become a powerful breeding strategy

for wheat quality improvement.

METHODS

Plant material and growth conditions

Wheat plants used for end-use quality evaluation were grown in an exper-

imental field of China Agricultural University in Beijing (39�570N, 116�170E)
during the normal growing seasons from 2021 to 2023. Seeds were

distributed in rows that were 2 m long with a 20-cm spacing. Details

of the genotypes and germplasm used in this study are listed in

Supplemental Table 7. RILs from the parents Nongda 3097 and

Lunxuan 987 were generated by eight generations of self-pollination

(Supplemental Table 13).

Full-length isoform sequencing and data analysis

Seeds of Nongda 3672 were grown in an open field, and endosperm sam-

ples were collected at 15 DAP. RNA was isolated from these samples us-

ing a TransZol Plant kit (TransGen Biotech, ET121-01). Purified RNA was

dissolved in RNase-free water, and integrity was determined using an Agi-

lent 2100 Bioanalyzer (Agilent Technologies). Only total RNA samples with

an RNA integrity number R8 were used for library construction.

To generate sufficient and accurate read data for SSP annotation, the

PacBio Sequel and Illumina NovaSeq 6000 platforms were used for

sequencing. Long-read sequencing was performed using CCS mode on

the PacBio Sequel platform. HiFi SMRTbell libraries were constructed

using the SMARTer PCR cDNA Synthesis Kit according to the manufac-

turer’s protocol. HiSeq libraries were prepared using the Illumina Tru-

Seq RNA Sample Prep Kit. In brief, fragmentation buffer was added to

break mRNA into fragments of 250–300 nucleotides. The fragments

were used as templates to synthesize first-strand cDNA. After second-

strand cDNA synthesis, fragments of suitable size were purified and

amplified by PCR. PCR products were sequenced on the Illumina HiSeq

6000 platform.

Effective subreads were obtained using the P_Fetch and P_Filter func-

tions (parameters: miniLength = 50, readScore = 0.75, artifac = �1000)

in the SMRT Analysis software suite (http://www.pacificbiosciences.

com/devnet/). CCSs were obtained from the P_CCSmodule using the pa-

rameters ‘‘MinCompletePasses = 2 andMinPredictedAccuracy = 0.’’ After

checking for the poly(A) signal and 50 and 30 adaptors, only CCSs with all

three signals were considered full-length non-chimeric (FLNC) reads

(Dong et al., 2015; Minoche et al., 2015). Unmerged subreads were also

examined, and those with the three signals were incorporated into the

final FLNC read set. Additional nucleotide errors in FLNC reads were

corrected using the Illumina RNA-seq data with the software proovread

(Hackl et al., 2014). Finally, 17 791 corrected FLNC reads were

obtained, with an average read length of 1845 bp.

Searching full-length transcripts for SSP gene members

The 17 971 corrected FLNC reads were used to search for SSPs in

Nongda 3672 endosperm using Pfam (El-Gebali et al., 2019). The

conserved gliadin domain (PF13016 and PF00234) and HMW-GS

domain (PF03157) were used to search 17 971 corrected FLNCs with

Pfam_scan (https://github.com/aziele/pfam_scan) using default parame-

ters. Diamond (Buchfink et al., 2015) was performed to identify SSPs to

reduce transcript loss from 17 971 corrected FLNCs, and 42 gliadins in

Xiaoyan 81 (Wang et al., 2017) were used as query sequences with the

parameters ‘‘–sensitive –max-target-seqs 20 –evalue 1e-5.’’ Sequences
1050 Molecular Plant 17, 1038–1053, July 1 2024 ª 2024 The Author.
without signalIP were filtered out, as all SSPs contain signal peptides

in their N termini. Signal peptides were predicted with SignalIP

5.0 (https://services.healthtech.dtu.dk/services/SignalP-5.0/). Sequence

redundancy was suppressed using CD-HIT (https://github.com/

weizhongli/cdhit/) with a 99% sequence-identity threshold, because the

accuracy of SMRT sequencing corrected by Illumina sequencing is

99%. Finally, 85 SSPs were annotated in Nongda 3672.

BLASTNwas used to identify candidate SSPs in published wheat genome

assemblies, including those of Chinese Spring IWGSCv1.0, PI190962

(spelt wheat), Mace, LongReach, Lancer, Julius, ArinaLrFor, CDC Land-

mark, CDC Stanley, Jagger, Norin 61, SY Mattis, Zang 1817, and Fielder.

The sequences of 42 previously characterized gliadins in Xiaoyan 81 and

85 SSPs in Nongda 3672 (Wang et al., 2017) were used as queries.

Sequences of all genome assemblies were downloaded from the NCBI

Sequence Read Archive or NCBI BioProjects (International Wheat

Genome Sequencing Consortium, 2018; Guo et al., 2020; Walkowiak

et al., 2020; Sato et al., 2021). Sequences without signalIP were filtered

out. A total of 649 SSPs were identified, including 21 u-gliadins, 89

g-gliadins, 323 a-gliadins, 97 ALPs, 90 LMW-GS, and 29 HMW-GS

(Supplemental Table 5). We then used BLAT (BLAST-Like Alignment

Tool) (Kent, 2002) with default parameters for pairwise calculation of

sequence similarity and merged sequences with sequence similarity

R99% using MCL-14-137 (Dongen, 2008) with the parameter ‘‘-I 2’’

into one group. The longest sequence in each group was then selected

as the representative sequence for subsequent analysis. A final set of

139 non-redundant representative SSP sequences was identified

(Supplemental Table 4).

Identified k-mers uniquely represent SSP genes

The unique k-mers for each non-redundant SSPwere identified using JEL-

LYFISH 2.2.10 with the parameters ‘‘-t 15 -m k -s 4G -C.’’ Various k-mer

sizes (k = 17, 19, 21, 23, 25, 27, 29, 31, 33) were tested to balance compu-

tational complexity with k-mer specificity. As k-mer length increases, the

number of identifiable unique k-mers in SSP genes also increases

(Supplemental Figure 2) and the computational time and resources

required grow exponentially. To find the best option, we compared the

number and coverage of identifiable unique k-mers at different k

lengths. Our analysis revealed that a 29-mer was the best choice for iden-

tifying sufficient unique k-mers for each representative gene while mini-

mizing computational burden; 29 bp was therefore chosen as the optimal

k-mer length for subsequent analysis. Unique 29-mers were generated

and selected using the JELLYFISH subcommand ‘‘dump -L 1 -U 1.’’

Finally, a database of 40 453 unique 29-mers was produced to

represent the 139 non-redundant SSP genes.

Inference of SSP presence/absence variation in wheat
accessions based on k-mers

To efficiently infer the presence of k-mers by scanning large raw

sequence files, we developed a C++-based tool available at https://

zhangzhaoheng24.github.io/PanSK/. We detected the presence or

absence of 40 453 unique k-mers identified in 139 non-redundant repre-

sentative sequences from the raw fastq sequencing files of each wheat

variety. For each SSP gene, if over half of its unique k-mers were detected,

we concluded that the gene was present in that particular wheat variety.

Reassembling SSP sequences with k-mers

To reassemble the sequence of a variety-specific SSP gene, all raw

sequencing reads carrying corresponding unique k-mers were

extracted and aligned to the reference sequence of the SSP gene using

BWA (https://github.com/lh3/bwa) with default parameters. SNPs and in-

dels were identified with the HaplotypeCaller module of GATK v3.8

(McKenna et al., 2010). A final sequence was generated by refilling

SNPs/indels using the ‘‘FastaAlternateReferenceMaker’’ module of

GATK v3.8.

http://www.pacificbiosciences.com/devnet/
http://www.pacificbiosciences.com/devnet/
https://github.com/aziele/pfam_scan
https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://github.com/weizhongli/cdhit/
https://github.com/weizhongli/cdhit/
https://zhangzhaoheng24.github.io/PanSK/
https://zhangzhaoheng24.github.io/PanSK/
https://github.com/lh3/bwa
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Identification of diversified SSP haplotypes between landrace
and cultivar groups

To identify SSP haplotypes that were selected or unselected during

breeding, we determined the BSS based on the frequencies of varieties

in groups of landraces and cultivars. The BSS for each haplotype was

calculated as BSS = (number of cultivars carrying the haplotype/number

of all accessions carrying the haplotype) 3 2 � 1. Thus, BSS R 0.5 indi-

cates enrichment in the cultivar group, and BSS% �0.5 indicates enrich-

ment in the landrace group.

Association analysis

The ‘‘presence’’ or ‘‘absence’’ of k-mers was encoded as genotype infor-

mation for each sequenced accession. For SDS-SV measurement, the

sedimentation volume of 2 g of flour was measured for 5 min (Chen

et al., 2019). Subsequently, the phenotyped SDS-SVs were associated

with all the k-mers by performing t-tests to compare SDS-SVs between

the two genotype groups for each k-mer. When k-mer present with

higher SDS-SV with statistically significant p-values, the corresponding

haplotypes were considered as a positive correlation, and vice versa.

All tests were performed using at least three biological replicates for

each sample.

Machine-learning-based prediction of end-use-quality
phenotypic traits

To generate a set of non-redundant k-mers excluding the linkage for

phenotypic prediction, k-means were used to cluster k-mers on the basis

of their presence/absence-variation genotypes into 1000 initial clusters,

and one k-mer was then randomly selected from each cluster. Thus,

1000 candidate k-mers were retained as the non-redundant k-mer set.

We then built KPPer to predict SDS-SVs from k-mers using a random-

forest strategy with the parameters ‘‘estimators = 500, random states =

42’’ using scikit-learn (https://scikit-learn.org/) to train the machine-

learning model and perform testing. The presence/absence-variation

states of 1000 k-mers across 172wheat varietieswere used as genotypes,

and corresponding data for SDS-SV, a major trait that contributes to

wheat end-use quality, were collected for these varieties and used as

phenotype data.

Ten-fold cross-validation was performed by randomly splitting the dataset

into a training dataset (90%) and a testing dataset (10%). A greedy strat-

egy was used to prioritize the fewest key k-mers for prediction, starting

from the first round by selecting one k-mer with the highest Pearson’s cor-

relation coefficient for prediction. Thereafter, in each round, a new k-mer

was added to the k-mer set to achieve the best prediction performance as

a whole. Finally, we showed that 90 selected k-mers achieved a stable

prediction performance (Pearson’s correlation coefficient = 0.64).

DATA AND CODE AVAILABILITY

d The Iso-Seq sequence data generated in this study have

been deposited in the National Genomics Data Center

under accession number NGDC: PRJCA026228. The re-

sequencing data were downloaded from previous studies

under Genome Sequence Archive (https://bigd.big.ac.cn/

gsa) accessions GSA: CRA001951, CRA001870, and

CRA002507.

d The data analysis methods and code were based on previ-

ous studies at github (https://zhangzhaoheng24.github.io/

PanSK/), and specific data and code are available upon

request.
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