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Integrated single-nucleus and spatial  
transcriptomics captures transitional  
states in soybean nodule maturation

Zhijian Liu1,8, Xiangying Kong2,3,4,8, Yanping Long    1,8, Sirui Liu2,5, Hong Zhang    1, 
Jinbu Jia    1, Wenhui Cui2,6, Zunmian Zhang2,5, Xianwei Song7, Lijuan Qiu2, 
Jixian Zhai    1   & Zhe Yan    2,3 

Legumes form symbiosis with rhizobium leading to the development 
of nitrogen-fixing nodules. By integrating single-nucleus and spatial 
transcriptomics, we established a cell atlas of soybean nodules and 
roots. In central infected zones of nodules, we found that uninfected 
cells specialize into functionally distinct subgroups during nodule 
development, and revealed a transitional subtype of infected cells with 
enriched nodulation-related genes. Overall, our results provide a single-cell 
perspective for understanding rhizobium–legume symbiosis.

On compatible host plants, rhizobium infect and form symbiotic 
organ-nodules in the root, establishing nitrogen-fixing nodules that 
can convert atmospheric nitrogen into organic ammonia for host plant 
development. Within this highly heterogeneous tissue, cells of vari-
ous types have different functions, and some important physiologi-
cal and transcriptomic programmes are only active in some specific 
cell types. Despite remarkable advances in the field1–6, knowledge on 
specific contributions of different types of cell in nodules as well their 
relationships during nodule maturation is still limited, especially in 
determinate nodules.

To reveal cell-type-specific dynamic gene expression during nod-
ule maturation in soybean, we established three single-nucleus libraries 
on the basis of the 10x Genomics Chromium platform with two differ-
ent developmental stages of nodules (at 12 days post-infection (dpi) 
and 21 dpi) (Supplementary Fig. 1), with the corresponding region 
of roots where the nodules were formed at 21 dpi as control (Fig. 1a). 
The obtained reads were almost exclusively mapped to the soybean 
genome, indicating that the captured messenger RNAs were not derived 
from rhizobia (Supplementary Fig. 2). We obtained a total of 26,712 

high-quality single-nucleus transcriptomes in the three libraries cov-
ering 39,337 genes, with median number of genes per nucleus of 1,342 
and median unique molecular identifiers (UMIs) per nucleus of 1,636 
(Supplementary Data 1 and 2). After integration of the three datasets 
using scVI7, we obtained 15 cell clusters (Fig. 1b,c) and a series of upregu-
lated genes for each cluster (Extended Data Fig. 1 and Supplementary 
Data 3). In addition, we also identified differentially expressed genes 
in each cluster between samples (Supplementary Fig. 3 and Data 4).  
With known soybean marker genes, homologues of marker genes in 
other legumes and Arabidopsis as well as a public Arabidopsis single cell 
RNA-seq (scRNA-seq) dataset8, we successfully identified root epider-
mis (cluster 5), root vascular bundle (cluster 3), nodule vascular bundle 
(cluster 9), nodule cortex (cluster 1) and infected cells (ICs) in nodule 
central infected zones (CIZ) (cluster 12) (Extended Data Figs. 2 and 3, 
and Supplementary Fig. 4 and Data 5). With the benefit of scRNA-seq 
data from Arabidopsis root8, we also successfully identified some cell 
subtypes of vascular bundle, including pericycle (subcluster vb-0, 
vb-5), companion cells (vb-6), phloem-like cells (vb-2) and xylem-like 
cells (vb-4) (detailed in Supplementary materials and Fig. 5). However, 
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Fig. 1 | Combined single-nucleus and spatial transcriptomes reveal nodule 
heterogeneity at different developmental stages. a, Schematic diagram 
of the integration of single-nucleus and spatial transcriptomics analysis. The 
rightmost panel is integrated analysis plotted on the basis of the results shown 
in d. b, Integration of three single-nucleus datasets. c, Top: UMAP visualization 
of 15 identified cell clusters in nodules and roots. ‘*’ indicates that the cluster 
is annotated by spatial transcriptome. Bottom: cartoon diagram of nodule 
structure. d, Spatial distribution of different cell types in 12- and 21-dpi nodules. 
Upper left: bright-field image of nodule sections used to prepare the spatial 

transcriptome. Two replicates were analysed for both 12-dpi and 21-dpi nodules. 
The other images show the spatial distribution of cell type proportions for each 
single-nucleus cluster. The colours represent the fraction of single-nucleus 
transcriptomes of each cluster deconvolved by destVI. e, Validation of annotation 
results by GUS-reporter lines. The left panel of each gene indicates the result of 
the GUS-reporter line, and the right panel indicates the expression pattern of 
the gene identified by snRNA-seq. Scale bars, 100 μm. These experiments were 
repeated in three independent assays and for each section; at least three nodules 
were analysed, and all showed the same expression pattern.
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due to the scarcity of marker genes in soybean nodules, there are still 
many cell clusters that cannot be successfully assigned, especially 
those dominated by nodules (Extended Data Fig. 3b). To overcome this 
problem, we used Stereo-seq9 to track the spatial expression of genes 
of the same developmental stage nodules (Fig. 1a and Extended Data 
Fig. 4). We classified the Stereo-seq data into 6 clusters on the basis of 
their spatial information and histological features, including CIZ cells 
(cluster 0), inner cortex (cluster 1), outer cortex (clusters 2, 4), epider-
mis (cluster 5) and vascular bundle (cluster 3) (Extended Data Fig. 5a), 
and identified the upregulated genes for each cluster of Stereo-seq data 
(Supplementary Data 6). With a deconvolution-based approach, we 
estimated the proportion of single-nucleus transcripts that belonged to 
each cluster of single-nucleus datasets for each bin, which was merged 
by several adjacent spots of Stereo-seq data (detailed in Supplemen-
tary materials). Therefore, we validated the cluster identities that 
we detected above and further assigned cluster 0 (in CIZ), 2 (outer 
cortex), 4 (outer cortex), 7 (in CIZ) and 11 (in CIZ) on the basis of their 
distribution over space (Fig. 1c,d). We also confirmed the results of the 

deconvolution-based approach by examining the expression patterns 
of these upregulated genes of Stereo-seq data in our single-nucleus 
libraries (Extended Data Fig. 5b and Supplementary Data 6). To validate 
our final annotation, we performed β-glucuronidase (GUS) staining and 
RNA in situ hybridization with cell-type-specific genes, and observed 
corresponding signals in nodules (Figs. 1e and 3c, and Extended Data 
Figs. 6 and7). In summary, here we successfully classified the major cell 
types of both root and nodule.

There are four clusters co-localized in the CIZ of nodules: 0, 7, 11 
and 12 (Fig. 1d). Recently, uninfected cells (UCs) and infected cells (ICs) 
were manually isolated from nodules of Lotus japonocus and upregu-
lated genes were identified in these two cell types4. We therefore inves-
tigated expression patterns of soybean orthologues of UC and IC genes 
from nodules of Lotus japonocus in our soybean single-nucleus data-
sets. Then, we identified cluster 0, 7 and 11 as UCs and assigned cluster 
12 as ICs (Fig. 2a, and Supplementary Figs. 6 and 7, and Data 7). In UCs, 
cluster 0 is shared by nodules at two different developmental stages, 
while two clusters (7, 11) are almost only found in 21-dpi nodule cells 
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Fig. 2 | Dissection of central infected zone reveals distinct subtypes of nodule 
cells. a, The gene expression pattern of soybean orthologues of UCs and ICs 
highly expressed genes identified from Lotus japonicus in our soybean single-
nucleus datasets. These genes were identified by manual isolation of UCs and  
ICs and single cell-type transcriptome in ref. 4. Only one-to-one orthologues  
were used here. Expression levels of gene sets were measured by AUC score.  
b, Bar chart representing the percentage of cells from different samples in each 
UC cluster. N indicates the cell numbers. c, Developmental trajectories of UCs 

inferred using Cellrank and CytoTRACE. Colours represent different IC clusters 
(0, 7, 11). The arrows refer to the most likely future direction of cell development. 
The arrow directions of clusters 7 and 11 are almost pointing from cluster 0 to 
the corresponding clusters, indicating that these cells develop from cluster 0. 
d, Dotplot representing the expression pattern of representative upregulated 
genes for each UC cluster. The size of the dot indicates the faction of cells 
expressing the gene, and the colour intensity indicates the expression level.
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Fig. 3 | A rare subcluster of ICs is essential for nodule maturation and function. 
a, UMAP visualization of identified IC subclusters. b, Bar chart representing the 
percentage of cells from different samples in each sub-cell type. N indicates the 
cell numbers. c, Validation of cluster 12-0- and 12-1-specific marker genes by RNA 
in situ hybridization. These experiments were repeated in three independent 
assays and for each section; at least three nodules were analysed and all showed 
the same expression pattern. d, AUC score of genes encoding symbiosis 
membrane protein. P values were calculated using two-sided Mood’s median test, 
P > 0.05 between cluster 12-1 and the remaining three UC clusters. Cell numbers 
are the calculated sum of the three libraries: 12-dpi nodules, 21-dpi nodules and 
roots. Boxplot centre, median; bounds of box, lower quartile (Q1) and upper 
quartile (Q3); minima, Q1 – 1.5 (Q1-Q3); maxima, Q1 + 1.5 (Q1-Q3). e, Percentage of 
known symbiotic nitrogen fixation genes reported in ref. 1 in different cell-type-
specific gene sets. Calculation of the P value is detailed in Supplementary Fig. 10.  
N indicates the number of genes. f, Dotplot representing the expression pattern 

of 12-1-specific known symbiotic nitrogen fixation genes. The size of the dot 
indicates the faction of cells expressing the gene, and the colour intensity 
indicates the expression level. g, Heatmap showing the expression pattern of 
detected cluster-specific genes for subcluster 12-0 and 12-1 in inoculated and 
mock-inoculated root hair datasets. FPKM, fragments per kilobase of exon 
model per million mapped fragments. h, Nodulation phenotypes of the cluster 
12-1-specific gene GLYMA_02G004800 knockout line (GLYMA_02G004800-KO) 
after hairy root transformation. Left: nodule number (NN) per g root fresh weight 
(RFW). ***P < 0.001 indicate significant differences (P = 6 × 10−4) based on two-
sided t-test. Error bars represent mean ± s.d. EV, empty vector. KO, transgenic 
knockout line. Top right: fluorescent image showing the expression of GFP which 
was used as an indicator for transgenic roots. Bottom right: representative 
transverse sections of nodules from GLYMA_02G004800 knockout transgenic 
root and vector control roots (EV). These experiments were repeated in three 
independent assays and the same results were obtained (N > 30).
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(Fig. 2b), indicating that cluster 7 and cluster 11 emerge at later stages 
during nodule maturation. To reveal the differentiation trajectory of 
these two UC clusters, we performed pseudo-time analysis with all the 
UC clusters (clusters 0, 7 and 11) using three mainstream trajectory 
inference algorithms (Fig. 2c and Extended Data Fig. 8) and found that 
the inferred direction of differentiation was from cluster 0 to cluster  
7 and 11, suggesting that these two UC clusters developed from cluster 0 
during nodule maturation. In tropical legumes such as soybean, ureides 
are the primary export forms in root nodules from currently fixed nitro-
gen. Ureides are reported to be mainly synthesized in UCs and enzymes 
responsible for ureides biosynthesis present a higher specific activity 
in the UCs10,11. For ureide biogenesis, the uricase and aspartate ami-
notransferase genes, which are expressed in nodules, are expressed in 
all three UC clusters and especially upregulated in UC cluster 7 (Fig. 2d), 
while for ureide transportation, 2 of 3 ureide permease genes are mainly 
expressed in UC cluster 0 (Fig. 2d). These results reveal a complex com-
partmentalization in UCs during ureide production and transportation 
in soybean nodules. Moreover, we found that expression of 6 of 8 beta 
amylase genes is significantly upregulated in cluster 11 (Fig. 2d), and 
the pathways associated with polysaccharide catabolic process, starch 
catabolism, are also activated, indicating that cluster 11 is involved in 
energy supply for symbiotic nitrogen fixation (Supplementary Fig. 8).  
Taken together, these results reveal that the UCs can be divided into dif-
ferent functionally specialized sub-cell types and two of them emerge 
at later stages during nodule development, which can facilitate the 
exchange of nutrient and energy sources required for symbiosis. We 
then focused on infected cells, the core sites of symbiotic nitrogen 
fixation (SNF). Consistent with previous reports, all leghemoglobin 
genes12 and some nodulin genes were highly expressed in cluster  
12 (Extended Data Fig. 9). We also found that 8 genes encoding sugar 
transporter and 5 genes belonging to isopropylmalate synthase families 
are listed in our identified upregulated genes of cluster 12 (Supplemen-
tary Data. 3), which is consistent with our gene ontology (GO) enrich-
ment analysis (Supplementary Fig. 9), demonstrating active carbon and 
nitrogen exchange between soybean and rhizobia in ICs. By recluster-
ing ICs, we found that they could be further divided into two sub-cell 
types (12-0 with 492 nuclei and 12-1 with 38 nuclei) (Fig. 3a). Subcluster 
12-0 is shared by nodules at two different developmental stages, but 
the small subcluster 12-1 is almost exclusively occupied by the 12-dpi 
immature nodule (Fig. 3b). Since only a small number of nuclei were 
clustered to 12-1, to rule out the possibility of overclustering, we veri-
fied the expression pattern of specifically expressed genes of these two 
subclusters using RNA in situ hybridization. These genes are expressed 
in the CIZ but showed distinct expression pattern, and the 12-1-specific 
genes were mainly detected in immature nodules, proving that these 
are two different cell subtypes (Fig. 3c and Extended Data Fig. 7).  
The expression levels of genes encoding symbiosome membrane 
protein13 were much higher in subcluster 12-0 than in 12-1 and other 
subclusters in UCs (Fig. 3d), indicating a more active movement of 
solutes between symbionts in subcluster 12-0 in the nodule infection 
zone. We next checked subcluster 12-1-specific genes and found that 
nearly 12% of the genes (6/50) are included in known SNF genes previ-
ously reported1 (Extended Data Fig. 10). This proportion is significantly 
higher than in clusters 12, 12-0 and all detected clusters (Fig. 3e and 
Supplementary Fig. 10). Three of the remaining 44 genes have been 
reported as SNF genes in recent years14,15 (Fig. 3f and Supplementary 
Data 8). We further found that all these 9 SNF genes, including SPK116, 
two homologs of medicago VPY17, NNL114, NPL18, RINRK119, RPG20, SPL9d15 
and CBS121, are involved in the formation of infection threads (ITs). ITs 
are formed in root hair after rhizobium attachment and they assist 
rhizobium in reaching and finally being released into developing nod-
ules. We analysed the expression of 12-1 cluster genes in soybean root 
hair in the early stage of rhizobial infection (12, 24 and 48 hpi (hours 
post-infection)) using public datasets22 and found that 60% of these 
genes (21/35) are expressed only after rhizobia inoculation (Fig. 3g).  

In contrast, of the cluster 12-0-specific genes, only 2 were induced after 
induction. These results imply that cluster 12-1 could be involved in IT 
extension and rhizobia release in ICs during nodule maturation, and 
genes that are specifically expressed in such cells may play a critical 
role in the interaction between soybean and rhizobium, and the final 
stages of symbiosis establishment. Then, we explored the function 
of a subcluster 12-1-specific gene GLYMA_02G004800 in nodulation 
(expression pattern is plotted in Extended Data Fig. 10). When the gene 
was knocked out by CRISPR-Cas9 using hairy root transformation, we 
found that the nodule number was increased, and the infection zones 
were white in nearly 50% of transgenic nodules (14/30), providing clues 
to the importance of cluster 12-1 during nodule maturation (Fig. 3h).

Overall, we provide a cellular atlas by combining single-cell data 
with spatial transcriptomic data. On the basis of this atlas and experi-
ment results, we identified rare cell subtypes and their important 
roles for nodule maturation and function. To help the community 
explore the heterogeneity of different cell types in soybean nodules, 
we also present a web server (https://zhailab.bio.sustech.edu.cn/ 
single_cell_soybean) to facilitate the use of the datasets generated in 
this study. In conclusion, we provide a data resource that will contrib-
ute to learning the regulatory network of nodule maturation at the 
single-cell level in the future.

Methods
Plant growth and nodulation
Wild-type soybean (Glycine max L. cv Williams 82) seeds were dis-
infected with chlorine (100 ml NaClO + 4 ml concentrated HCl) and 
grown on moist sterile filter paper at 22 °C in the dark for 3 d. After 
germination, the seeds were transferred to pots filled with sterile mixed 
vermiculite and perlite (2:1, v/v) in a growth chamber with 16 h light/8 h 
dark cycle and relative humidity of 35% at 28 °C. Nitrogen-free nutrient 
solution (0.5 mM MgSO4, 0.2 mM CaCl2, 0.15 mM K2HPO4, 1 mM K2SO4, 
0.02 mM FeCl3, 0.5 µM H3BO3, 0.1 µM MnSO4, 0.15 µM ZnSO4, 0.04 µM 
CuSO4, 2.5 pM NaMoO4, 2.5 pM CoCl2 and 2.5 pM NiSO4) was poured 
twice a week. After the cotyledon spread out, about a week after trans-
ferring to pots (about 7 d after germination), the roots were infected 
with rhizobium strain USDA110 for nodulation.

Hairy root transformation
Agrobacterium rhizogenes-mediated transformation was performed 
as previously reported23. The binary vectors harbouring the gene con-
struct of interest and a green fluorescent protein (GFP) label (Supple-
mentary Data 9) that can be used to identify the transgenic roots were 
introduced into Agrobacterium rhizogenes K599. The primary root 
was cut off at 1 cm below the cotyledons and excised from 7-day-old 
soybean (Wm82) seedlings after the real leaves were unfolded. After 
inoculation with Agrobacterium, the infected seedlings were placed 
into moist sterile vermiculite. The GFP-negative induced hairy roots 
were removed every 7 d, and the transgenic positive roots were retained 
until the plants had robust transgenic roots that could sustain plant 
growth (approximately 2 weeks). Plants were then infected with rhizo-
bia USDA110 for nodulation.

Histochemical analysis of GUS activity
Promoter fragments (~2 kb, upstream of ATG) of marker genes 
identified by single-nucleus RNA sequencing were amplified (with 
primers in Supplementary Data 9) and cloned into the GFP-labelled 
binary vectors to generate the promoter:GUS-GFP constructs 
pCambia1300-pro-GUS-GFP (Supplementary Data 9). The resulting 
plasmids were introduced into soybean (Wm82) by Agrobacterium 
K599 as described above. GUS staining was performed as previously 
described24,25. In brief, the fresh nodules were immersed in 5-bromo- 
4-chloro-3-indolyl-b-d-glucuronic acid (X-Gluc)-containing solution 
and vacuum infiltrated for 30 min. Histochemical staining for GUS 
activity was performed at 37 °C for 12 h. After staining, the nodules 
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were fixed with FAA buffer (5% formaldehyde, 5% acetic acid and 50% 
ethanol) overnight, washed with ethanol and embedded in paraffin. 
Then, the nodule was sliced transversely into 25–35 µm sections with 
a microtome (ZEEDO, HS-3315). GUS activity was observed with a light 
microscope (BSP-8N) equipped with a camera. For each construct, 
three individual transgenic lines were generated and at least three 
nodules from each line were analysed, and all had the same expres-
sion pattern.

CRISPR/Cas9-mediated genome editing in soybean hairy roots
CRISPR/Cas9 technology was used to knock out GLYMA_02G004800. 
First, the CDS sequence of GLYMA_02G004800 was analysed using 
the online software CRISPR-P (http://crispr.hzau.edu.cn/cgi-bin/
CRISPR2/CRISPR), and three guide RNAs (GAGAAAGCAGAGGAGA-
AAGG, GAGCTCTCTTCCAACCCGGG and TTTGAATGCGAGTGC-
CACCC) were obtained. The target sequences were cloned into the 
same single guide RNA (sgRNA) expression cassettes of the pBlue-
script SK(+)-LjU6-BbsI-gRNA vector (Supplementary Data 9) in series. 
The resulting construct GLYMA_02G004800-gRNA was validated by 
sequencing. Then the U6 promoter and expression cassettes were cut 
by Kpn I and Xba I and ligated to the pCambia1300-GFP-Cas9 vector 
(Supplementary Data 9). The plasmids were then transformed into 
Agrobacterium rhizogenes strain K599 for hairy root transformation 
as described above. A preliminary experiment was conducted to test 
the editing efficiency of the vector. Effective edits occurred in 12 of 
the 15 GFP-positive independent roots. Three weeks after inocula-
tion with rhizobia, we first sequenced GLYMA_02G004800 from each 
GFP-positive root, then the number of nodules and fresh root weight 
on edited roots were analysed.

RNA in situ hybridization
Nodules collected at 12 and 21 dpi were fixed in FAA solution for 24 h 
at 4 °C and dehydrated in an ethanol series, cleared in a xylene series 
and embedded in paraffin. Then, 10 µm sections were prepared using 
a microtome (ZEEDO, HS-3315). For probe labelling, specific 500 bp 
sequences of target genes were amplified from the complementary 
DNA (cDNA) of Wm82 with primers (Supplementary Data 9) and cloned 
to pEASY-Blunt cloning vector (TransGen Biotech, CB111-01). With 
the resulting vectors as templates, both SP6 and T7 promoter-fused 
fragments were amplified (with primers in Supplementary Data 9) and 
purified. Then the digoxigenin-labelled antisense and sense probes 
were in vitro transcribed with these fragments as templates, respec-
tively using SP6 and T7 RNA polymerase with a DIG RNA labelling 
kit (Roche, 11175025910). The paraffin on the sections was dissolved 
with xylene, and the tissue was digested with Proteinase K (Sigma, 
P2308) and dehydrated with graded alcohol. The prepared probe 
buffer was added to the tissue sections and incubated for 12 h at 55 °C 
in a humidified box. After hybridization, the sections were incubated 
with anti-digoxin antibody (Roche, 11093274910) for 90 min. Then 
the sections were washed and incubated in a colour reaction solu-
tion (Roche, 11681451001) containing blue tetrazolium chloride and 
5-bromo-4-chloro-3-indolylphosphate for 36 h in a dark humidified 
box. Photographs were taken under bright-field illumination using 
a microscope (BSP-8N). For each probe, at least three nodules were 
analysed, and all showed the same expression pattern.

Nuclei isolation and 10× single-nucleus RNA-seq library 
construction
The fresh nodules at 12 and 21 dpi and roots at 21 dpi in the vicinity of 
mature nodules were collected for single-nucleus RNA-seq. The two time 
points respectively represent the early and mature stages of soybean nod-
ule development5,26. For the 12-dpi nodules, we selected those with a diam-
eter of about 2 mm. For the 21-dpi nodules, we collected representative 
nodules with a diameter of about 6–8 mm (Supplementary Fig. 1). Nuclei 
isolation for root and nodules was performed as previously reported27. 

In brief, the root and nodules were chopped in ice-cold 1× Nuclei isola-
tion buffer (NIB, MilliporeSigma, CELLYTPN1) with 1 mM dithiothreitol 
(Thermo Fisher, R0861), 1× protease inhibitor (Sigma, 4693132001) and 
0.4 U μl−1 murine RNase inhibitor (Vazyme, R301-03). Then the lysate was 
filtered with a pre-wet 40 μm strainer and centrifuged at 500 g for 5 min 
at 4 °C. The nuclei pellet was resuspended with 500 μl NIB. For sorting, 
the nuclei were stained with 4,6-Diamidino-2-phenylindole (DAPI) and 
loaded into a flow cytometer with a 100 μm nozzle. PBS (1×, 1 ml) with 
1% BSA and 0.4 U μl−1 murine RNase inhibitor was used as the collection 
buffer. At least 100,000 nuclei were collected on the basis of the DAPI 
signal and the nuclear size. The sorted nuclei were pelleted at 4 °C and 
500 g for 5 min, and then resuspended in 50 μl 1× PBS with 1% BSA and 
0.4 U μl−1 murine RNase inhibitor. After checking the quality of nuclei and 
counting under a microscope using the DAPI channel, 20,000–30,000 
nuclei were loaded onto the 10x Genomics Chip. Library construction 
for Illumina sequencing was performed with 10x Chromium Single Cell 
3’ Solution v3.1 kit as described previously28.

Single-nucleus data analysis
Raw reads were mapped to the Glycine_max_v2.1 reference genome29 
by Cell Ranger (v6.0.0) using default parameters but enabling the 
‘include-introns’ option. The matrix was subsequently loaded onto the 
SCANPY package30 (v1.8.0) for analysis. For quality control, doublets 
were removed by ScDblFinder31 (v1.10.0) with default parameters, 
except that the expected doublet ratio parameter was determined 
by the formula 0.01 × N ÷ 1,000 (N is the Cell Ranger recovered num-
bers). Then genes expressed in less than 10 nuclei were discarded; 
only cells with gene counts between 400 and 4,000, and UMI counts 
between 600 and 6,000 were kept. To evaluate the effect of quality 
control parameters, we used stringent (gene counts between 600 
and 3,000, UMI counts between 800 and 4,000) and looser criteria 
(only remove putative doublets) and found that the clustering results 
were almost unaffected (Supplementary Fig. 11). The matrix was inte-
grated by scVI7 (v0.16.0) following the manual’s tutorial (https://docs.
scvi-tools.org/en/0.12.2/user_guide/notebooks/harmonization.html), 
except that ‘n_top_genes’ was set to 5,000. We therefore performed 
leiden algorithm (‘resolution’ set to 0.3) on nearest-neighbour graph 
(performed by ‘scanpy.pp.neighbors’ function, ‘n_neighbors’ set  
to 15) built on scVI lower-dimension space for clustering and used the 
Uniform Manifold Approximation and Projection (UMAP) algorithm 
(performed by ‘scanpy.tl.umap’ function, ‘resolution’ set to 0.3) to 
visualize the distribution of the data in scVI space. For annotation, we 
used existing experimentally validated marker genes (Supplemen-
tary Data 5) to unveil the identity of each cell cluster and used scANVI 
(v0.16.0)32 to validate the annotation results using public single-cell 
data on Arabidopsis roots8 with the following steps: first, we identi-
fied one-to-one orthologues using OrthoFinder33 (v2.5.4) with default 
parameters, then combined datasets of the two species on the basis of 
the orthologue information. Then, annotation transfer was conducted 
following the manual tutorial (https://docs.scvi-tools.org/en/0.12.2/
user_guide/notebooks/harmonization.html), except that the ‘n_layer’ 
parameter (which controls the number of encoder and decoder hidden 
layers of the neural network) of the scANVI model was set to 4. For the 
reclustering of cluster 12, we used the leiden algorithm and specified 
the ‘restrict_to’ parameter in ‘scanpy.tl.leiden’ (‘resolution’ set to 0.1).

We identified upregulated genes and specifically expressed genes 
of each cell cluster using the cellex algorithm34 (v1.2.2). Upregulated 
genes are defined as having a specificity score greater than 0.75 and 
detectable expression in at least 10% of the cells in the corresponding 
cluster. For cluster-specific expressed genes identified, genes were fil-
tered if they are expressed in less than 20% of cells of the corresponding 
clusters or more than 1% in the rest of the cells. Then, genes ranked in 
the top 50 in terms of specificity score were retained. To identify dif-
ferentially expressed genes (DEGs) of different samples in each cluster, 
we used the Wald test implemented by diffxpy (v0.7.4). For each sample, 
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if the number of nuclei in a cluster was below 100, this sample was no 
longer identified for DEGs in this cluster. After identification, we further 
filtered DEGs that did not satisfy the following criteria: (1) adjusted  
P value <0.01 and (2) fold change with log2-transform >4.

In the trajectory inference step, we combined Cellrank35 (v1.5.1) 
and CytoTRACE36 (wrapped in Cellrank) to track the dynamic changes 
in UCs following the manual’s tutorial (https://cellrank.readthedocs.
io/en/stable/beyond_rna_velocity.html). First, we extracted all the 
clusters of UCs and then removed genes that were expressed in no more 
than 10 cells. Then we computed the first- and second-order moments 
for each cell (‘n_pcs’ and ‘n_neighbors’ set to 30) as recommended by 
Cellrank’s tutorial. By combining the moments and the differentiation 
scores of each cell calculated by CytoTRACE, we calculated the matrix 
of directed transition probabilities using Cellrank.

Moreover, we used scVelo37 (v0.2.4) and monocle338 (v1.0.0) to 
verify the above trajectory inference results. In brief, for scVelo, we 
first calculated the spliced and unspliced matrices using velocyto, 
and then calculated the first- and second-order moments on the basis 
of the matrices (total, spliced and unspliced). Then we calculated full 
splicing kinetics and estimated the velocities for each gene. Finally, we 
computed the velocity graph and calculated the RNA-velocity-directed 
partition-based graph abstraction (PAGA) graph on the basis of the 
above-mentioned results. For monocle3, we first used the ‘preproc-
ess_cds’ and ‘align_cds’ functions in monocle3 package to preprocess 
the raw count matrix. Then, we used the ‘reduce_dimension’ function 
to calculate the principal component analysis (PCA) embedding of our 
datasets. Finally, we used ‘cluster_cell’, ‘learn_graph’ and ‘order_cells’ 
functions to get the inferenced trajectory.

In all the above steps, we used the AUCell (v1.18) package39 to 
calculate the area under the curve (AUC) score, the clusterProfiler40 
(v4.4) package to perform GO enrichment analysis and the rpy2 (v3.5) 
package to implement invocation of the R package.

Determining the resolution parameter for clustering
For the leiden algorithm, the ‘resolution’ parameter has a substantial 
impact on the number of clusters. To choose an optimal resolution 
parameter, we checked the results for resolution parameters ranging 
from 0 to 1.5 in 0.1 intervals. Then we annotated the resulting root data-
set by label transferring from the Arabidopsis root data and retained 
only successfully annotated nuclei. The degree of similarity between 
clustering and annotation results was measured using Adjusted Mutual 
Information (AMI). We found that the AMI was highest when the resolu-
tion was set to 0.2 (Supplementary Fig. 12a). However, at this resolution, 
most cells in cluster 6 could not be annotated and cluster 6 was merged 
with clusters 4 and 5 when the unsuccessfully annotated nuclei were 
added (Supplementary Fig. 12b). When the resolution was set to 0.5, 
we found that both clusters 0 and 1 were split (Supplementary Fig. 13a), 
making it difficult to identify specifically expressed genes from the 
newly generated two subclusters that came from the same cluster (Sup-
plementary Fig. 13b). Taken together, we used a final resolution of 0.3, 
which also had a high AMI score and gave a reasonable clustering result.

Choice of software tools
For doublet detection, we chose scDblFinder because of its best perfor-
mance41,42. For data integration, benchmark research shows that scVI 
and scanorama43 have the best performance44. We tested these two 
methods and found that scVI gave better integration results (Supple-
mentary Fig. 14). Moreover, we also tried another two integration algo-
rithms, Harmony45 (harmonypy, v0.0.6) and Seurat CCA46 (v4.1.1), and 
found that the clustering results from scVI remained clearly bounded 
on the UMAP plots from the algorithms (Supplementary Fig. 14). Hence, 
we used the integration results from scVI for downstream analysis.

For trajectory inference, we first chose CytoTRACE because it 
does not require manual specification of developmental start sites. 
To validate the results, we added the results of RNA-velocity analysis 

and Monocle3. All three software support the hypothesis that clusters 
7 and 11 develop from cluster 0.

Reclustering and annotation of vascular bundle cells
We extracted the nuclei of clusters 3 and 9 and then concatenated them 
with the scRNA-seq data of mature Arabidopsis vascular bundle cells8. In 
this step, we integrated the obtained data and performed label transfer 
using scANVI (Supplementary Fig. 5a). We set the ‘n_layer’ parameter to 
5 because distinguishing different cell subtypes requires a higher model 
complexity. Subsequently, we calculated the euclidean distance of soy-
bean cells in scANVI latent space and constructed the nearest-neighbour 
graph. Then we clustered these cells using leiden algorithm (‘resolution’ 
set to 0.2) and visualized them using UMAP. A total of 7 subclusters were 
obtained, named vs-0 to vs-6 (Supplementary Fig. 5b).

After clustering, we combined the label transfer results and the 
specifically expressed genes of subtypes of vascular bundles identi-
fied in Arabidopsis to annotate our soybean datasets (Supplementary  
Fig. 5c). These two methods were consistent in the annotation of subclus-
ter vs-0 (xylem pole pericycle), subcluster vs-5 (phloem pole pericycle) 
and subcluster vs-6 (metaphloem and companion cell). Although most 
of the cells in subcluster vs-4 were annotated as xylem in label transfer 
results, xylem-specific expressed genes were only highly expressed in 
a small number of them, so we defined subcluster vs-4 as xylem-like 
cells (Supplementary Fig. 5d). Similarly, we defined subcluster vs-2 
as phloem-like cells (Supplementary Fig. 5d). Since the two methods 
were not consistent on subcluster vs-1 and subcluster vs-3, we marked 
them as unknown subtypes (Supplementary Fig. 5d). Moreover, we 
identified upregulated expressed genes in different cell subtypes using  
the above-mentioned criteria (Supplementary Fig. 5e and Data 10).

Identification of ICs and UCs
We used upregulated genes of ICs and UCs of Lotus japonicus as previ-
ously identified47 to distinguish UCs and ICs (Supplementary Data 7). 
Their homologues in soybean were identified by OrthoFinder33. We first 
used all homologues to calculate the AUC score of the two gene sets and 
identified clusters 0, 7 and 11 as UCs and cluster 12 as ICs (Supplementary 
Fig. 6). However, given that the soybean genome is highly duplicated29 
and the duplicated genes experience weaker purifying selection48, we 
analysed the expression patterns of paralogous genes (2,561 pairs) at 
single-nucleus level and investigated the correlations of expression. We 
found a higher correlation and a lower expression difference between 
paralogous genes relative to others (Supplementary Fig. 15a,b), but 
only 629 pairs of genes were significantly more correlated than 
non-homologous genes (Supplementary Fig. 15c,d). Therefore, we used 
soybean one-to-one orthologues to verify our annotation and obtained 
consistent results (Fig. 2a, and Supplementary Fig. 7 and Data 7).  
The annotation results were also confirmed by previously reported 
IC-specific genes (Extended Data Fig. 2).

Expression difference analysis between paralogous genes
Dene duplication events were identified in ref. 49. Of these, 2,561 pairs 
of duplication events containing only two genes were kept for subse-
quent analysis. We first combined data from the same cell cluster to 
obtain a pseudo-bulk dataset, then used the log-transformed counts 
per million (CPM) value for calculating the Spearman’s rank correla-
tion coefficient and expression difference for each duplication event. 
After shuffling, we recalculated these two values as control. We used 
a bootstrap-based method to determine whether the correlation 
between homologous genes was significantly higher than those of 
other genes. We divided all detected genes into 50 equal parts accord-
ing to the average expression of genes in all nuclei. For each gene, we 
took a randomly selected gene from the part where the paralogue 
belonged and calculated its correlation coefficient. The above steps 
were repeated a thousand times. The P values were then calculated on 
the basis of the rank of the original correlation coefficients.
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Stereo-seq and data processing
Fresh nodules at 12 and 21 dpi were used for Stereo-seq analysis. 
Stereo-seq chip preparation and sequencing were performed at the 
Beijing Genomics Institute (BGI) as previously reported9. In brief, the 
nodules were quickly frozen in liquid nitrogen pre-cooled isopentane 
and cut into sections at a thickness of 10 mm with a Leica CM1950 cry-
ostat. Tissue sections were adhered to the Stereo-seq chip (generated 
by BGI, China) surface and fixed with methanol. For histological exami-
nation, tissue sections adjacent to it were adhered to glass slides and 
stained with Fluorescent Brightener 28. Images were acquired with a 
Motic fluorescence microscope. After washing with 0.1x SSC buffer, 
the sections on chip were permeabilized using 0.1% pepsin (Sigma, 
P7000) in 0.01 M HCl buffer. Then the RNAs were released from the 
permeabilized tissue by washing with 0.1x SSC buffer and captured by 
the DNA nanoball (DNB). After in situ reverse transcription overnight at 
42 °C using SuperScript II (Invitrogen, 18064-014) and tissue removal, 
cDNA-containing chips were then subjected to Prepare cDNA Release 
Mix treatment at 55 °C overnight. The released cDNA was purified with 
0.8x VAHTSTM DNA Clean beads and amplified with KAPA HiFi Hotstart 
Ready mix (Roche, KK2602) for 15 cycles. After quantification by Qubit, 
a total of 20 ng of PCR products were then fragmented with in-house 
Tn5 transposase. The fragmented DNA were amplified with KAPA HiFi 
Hotstart Ready mix and Stereo-seq-library primer pairs. PCR products 
were purified using AMPure XP beads (0.63 and 0.153). After DNB gen-
eration, the libraries were finally sequenced on an MGI DNBSEQ-Tx 
sequencer. The Stereo-seq raw data were preprocessed using SAW 
(v2.1.0) to generate a spot-gene matrix9. In this step, the bin sizes of the 
12-dpi nodule and 21-dpi nodule libraries were set to 50 ×50 and 80 ×80, 
respectively, to obtain the bin-gene matrix. Stained images of sections 
under a bright-field microscope were overlayed onto the resulting 
matrix. Then we performed deconvolution on the basis of single-nucleus 
sequencing data using destVI50 (v0.16.0). In this step, we removed the 
clusters obtained from single-nucleus data with less than 500 nuclei, and 
filtered genes that could not be detected in both the 10x library and the 
Stereo-seq library. Then we used ‘scanpy.pp.highly_variable_genes’ to 
obtain highly variable genes. We set up the CondSCVI model using our 
single nucleus RNA-seq datasets (‘n_layer’ set to 4), and then trained the 
destVI model with Stereo-seq datasets to perform the deconvolution 
on the basis of the pre-trained CondSCVI model. Using the ‘get_propor-
tions’ function, the proportion of transcripts from different cell clusters 
contained in each Stereo-seq bin was estimated.

Before clustering, we used SCTransform51 (v2) with default 
parameters to normalize the Stereo-seq datasets. Then, we used 
mefisto52 and mofa53 in muon54 (v0.1.2) to obtain the embedding of 
each bin on the basis of the normalized values and spatial informa-
tion. In this step, ‘n_factor’ was set to 5 and other parameters were 
as recommended (https://muon-tutorials.readthedocs.io/en/latest/
mefisto/3-MEFISTO-ST.html). We performed the leiden algorithm 
(‘resolution’ set to 0.2) on nearest-neighbour graphs (‘n_neighbors’ 
set to 15) built on mofa lower-dimension space for clustering and used 
the UMAP algorithm (‘resolution’ set to 0.3) to visualize the distribu-
tion of the data. For upregulated genes, we used the same criteria as 
the snRNA-seq analysis, but did not filter low-expression genes due to 
high sparsity of our Stereo-seq datasets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated in this study are deposited in the China National 
Center for Bioinformation with accession PRJCA009893. Raw sequenc-
ing data are deposited in GSA with accession CRA007122 and processed 
data are deposited in OMIX with accession OMIX002290. Source data 
are provided with this paper.

Code availability
The source code to reproduce this project can be accessed at https://
github.com/ZhaiLab-SUSTech/soybean_sn_st.
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Extended Data Fig. 1 | Heatmap representing the expression pattern of up-regulated genes for each cluster.
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Extended Data Fig. 2 | UMAP visualizations of clustering results (a) and cell-type specific marker genes (b).
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Extended Data Fig. 3 | Annotation results using public resources, including 
marker genes and scRNA-seq data of Arabidopsis. a. UMAP visualizations of 
annotation results. Unidentified cluster is masked by grey colour. “*” indicates 

this cluster is annotated by label transfer method. b. Bar chart represents the 
percentage of different samples in each clusters. Left, successfully identified 
clusters. Right, un-identified clusters.
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Extended Data Fig. 4 | Bright-field image of soybean nodule sections used to prepare the spatial transcriptome. Two replicates were used as the figure illustrated. 
Scale bars, 500 μm.
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Extended Data Fig. 5 | Using cluster-based method to annotate snRNA-seq  
datasets. a. Clustering and annotation results of Stereo-seq datasets.  
b. Expression patterns of spatially transcriptome-identified cell-type 

upregulated genes in Stereo-seq (upper panel) and snRNA-seq (lower panel). 
We did not identify up-regulated genes in the epidermis from the spatial 
transcriptomes, so they were not mapped.
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Extended Data Fig. 6 | Validation of cluster-specific marker genes by RNA in situ hybridization. These experiments were repeated in three independent assays and 
for each section, at least three nodules were analysed, and all showed the same expression pattern.
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Extended Data Fig. 7 | UMAP visualizations and RNA in situ hybridization of expression pattern of 12-0 and 12-1 specific genes that used in Fig. 2g. Scale bars, 
100 μm. These experiments were repeated in three independent assays and for each section, at least three nodules were analysed, and all showed the same  
expression pattern.
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Extended Data Fig. 8 | Developmental trajectory of UCs inferred by scVelo 
(a) and Monocle 3 (b). a. Left panel, stream plot of RNA velocities on the UMAP 
embedding. Right panel, partition-based graph abstraction (PAGA) graph 

with velocity-directed edges. Arrow width indicates the transition probability 
between different clusters. b. Pseudo temporal ordering of nuclei after manually 
specified developmental root cells.
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Extended Data Fig. 9 | Expression pattern of four leghemoglobin genes and eleven nodulin genes.
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Extended Data Fig. 10 | Expression pattern of 12-1 specific genes. Blue box, known SNF genes or homologs of known SNF genes in soybean. Asterisk indicates SNF 
genes collected by Roy et al1. Red box, GLYMA_02G004800, the example we used to explore the potential function of subcluster 12-1.
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