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Short Summary 40 

We constructed a comprehensive genome variation map of modern rice using 41 

resequencing data from 6044 representative modern cultivars across five major rice-42 

growing regions in China, revealing distinct regional breeding preferences. By 43 

integrating multiple datasets, we developed the RiceAtlas breeding design platform, 44 

which, for instance, facilitated the efficient optimization of grain shape in the Suigeng4 45 

cultivar. 46 

 47 
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Abstract 49 

Modern cultivated rice plays a pivotal role in global food security. China accounts for 50 

nearly 30% of the world’s rice production and has bred numerous cultivated varieties 51 

over the last decades that are well adapted to diverse growing regions. However, the 52 

genomic bases that underlie the phenotypes of modern cultivars are poorly 53 

characterized, limiting access to this vast resource for breeding of specialized, 54 

regionally adapted cultivars. In this study, we constructed a comprehensive genetic 55 

variation map of modern rice using resequencing datasets from 6044 representative 56 

cultivars from five major growing regions in China. Genomic and phenotypic analyses 57 

of this diversity panel revealed regional preferences for genomic backgrounds and 58 

specific traits, such as heading date, biotic/abiotic stress resistance, and grain shape, 59 

associated with adaptation to local growing conditions and consumer preferences. We 60 

identified 3131 QTLs associated with 53 phenotypes across 212 datasets under different 61 

environmental conditions through genome-wide association studies. Notably, we 62 

cloned and functionally verified a novel gene related to grain length, OsGL3.6. By 63 

integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for 64 

rice breeding design. We rapidly improved the grain shape of the Suigeng4 cultivar 65 

using the RiceAtlas breeding design function. These valuable resources enhance our 66 

understanding of the adaptability and breeding requirements of modern rice and can 67 

facilitate advances in future rice-breeding initiatives. 68 

Key words: Modern rice cultivar, Genomic bases, Rice-growing region, breeding design 69 
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Introduction 71 

Rice (Oryza sativa L.) is the world’s most important food crop, serving as the staple 72 

food for over 60% of China’s population and feeding half of the global population. 73 

China, a major rice producer, cultivates more than 26.6 million hectares annually, 74 

representing approximately 18% of the world’s rice-growing area and contributing 28% 75 

of global rice production (Nie and Peng, 2017). With its diverse ecological conditions 76 

and agricultural demands, China has released thousands of cultivars through continuous 77 

genetic improvement (https://www.ricedata.cn). However, a lack of genomic 78 

information on these cultivars poses significant challenges for rice breeding in China, 79 

particularly as climate change leads to more frequent and severe stress events, 80 

highlighting the limited adaptability of elite regional cultivars. 81 

Rice is cultivated from 18° N to 50° N latitude in China, covering a vast range that 82 

includes tropical, subtropical, warm-temperate, temperate, and cold-temperate climate 83 

conditions (Lv et al., 2018; Saud et al., 2022). On the basis of their ecological conditions, 84 

cropping systems, and rice cultivar types, China’s rice-growing areas are classified into 85 

six regions: South China (SC), Central China (CC), Southwest Plateau (SW), North 86 

China (NC), Northwest Arid (NW) and Northeast (NE) (Ding, 1961). The SC region, 87 

which benefits from abundant water, heat, and light, grows mainly indica rice. The CC 88 

and SW regions grow both indica and japonica rice, with indica rice primarily grown 89 

in southern CC and low-elevation SW areas and japonica rice in northern CC and high-90 

elevation SW areas. The majority of japonica rice is grown in the NC, NW, and NE 91 

regions, although an arid climate and limited water resources restrict its cultivation in 92 

the NW region (<1.0% of total acreage). The NC region, in the North China Plain, is 93 

characterized by abundant arable land, ample water resources, and a favorably warm 94 

climate. The NE region, including the Liaodong Peninsula, experiences significantly 95 

lower temperatures than other regions and grows mainly japonica rice in one-season 96 

cropping systems. The varied ecology of rice regions inevitably affects the genetic 97 

composition and diversity of the cultivars grown in each region. 98 

Recent decades have seen substantial advances in rice genetics and genomics, largely 99 
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driven by the development of sequencing technologies and bioinformatics. The 100 

International Rice Genome Sequencing Program completed the first genome of O. 101 

sativa cv. Nipponbare in 2005 (Sasaki and Burr, 2000), with an update in 2013 (Sakai 102 

et al., 2013), and the first complete telomere-to-telomere reference genome was 103 

released in 2023 (Shang et al., 2023). Wang et al. (2018) constructed a rice pan-genome 104 

that included 3010 accessions, adding 268 Mb of novel sequences (Wang et al., 2018). 105 

More recent studies have expanded this estimate to ∼1250 Mb and ∼1520 Mb (Shang 106 

et al., 2022; Zhang et al., 2022). Qin et al. (2021) generated a high-quality pan-genome 107 

assembly of 33 accessions and detected 171,072 structural variants and 25,549 gene 108 

copy-number variants (Qin et al., 2021). Wei et al. (2021) constructed a map of rice 109 

quantitative trait nucleotides (QTNs) using a library of 404 accessions (Wei et al., 2021), 110 

and comprehensively explored QTNs and their genetic interactions for 16 agronomic 111 

traits using 18K rice lines (Wei et al., 2024). Ye et al. (2022) investigated the genetic 112 

changes that have occurred in major inbred rice cultivars over decades of genetic 113 

improvement in China (Ye et al., 2022). All these efforts have facilitated the integration 114 

of genomic research with practical applications in breeding. However, there remains a 115 

notable gap in research on the genetic basis of modern rice cultivars, particularly 116 

regarding the study of modern cultivars across different growing regions. This 117 

represents a critical challenge for future rice breeding and improvement efforts. 118 

In this study, we used whole-genome resequencing to construct a comprehensive map 119 

of genomic variations based on 6044 accessions collected from the five major rice-120 

growing regions of China (Supplementary Figure 1). Through population-scale 121 

genomic analyses, we explored the genetic diversity, population structure, breeding 122 

preferences, and selection pressures that underlie the phenotypes of this modern-123 

cultivar diversity panel. To facilitate the use of large-scale diversity panels and 124 

associated data in rice breeding, we also established a publicly available database and 125 

analysis platform, RiceAtlas (https://www.cgris.net/RiceAtlas), that integrates genomic 126 

and phenotypic data from multiple rice research projects, including the 6044 accessions 127 

used in this study, the 3000 Rice Genomes Project (Wang et al., 2018), and a QTN 128 
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library comprising 404 accessions (Wei et al., 2021). To improve accessibility to the 129 

different types of information within this large data repository, we incorporated five 130 

main analysis functions into RiceAtlas: germplasm information, phenotype data, 131 

genome-wide association study (GWAS) results, genomic variation analysis, and a 132 

breeding design tool. As a proof-of-concept demonstration, we rapidly improved the 133 

grain shape of the Suigeng4 cultivar using the RiceAtlas breeding design function.  134 
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Results 135 

Collection of 6044 rice accessions from five major growing regions in China 136 

To investigate the genetic diversity of modern rice cultivars across the major rice-137 

growing regions of China, we gathered 6044 accessions from five major growing 138 

regions (SC, CC, SW, NC, and NE) (Figure 1A, Supplementary Table 1), ensuring that 139 

they captured a broad range of geographic, genetic, and morphological variation. 140 

Among these accessions, 5164 were newly collected, and 880 were sourced from our 141 

previous collection (Cui et al., 2022; Han et al., 2022; Liu et al., 2022; Liu et al., 2023), 142 

yielding a total of 2706 indica and 3338 japonica accessions (Supplementary Table 1). 143 

Specifically, we included 1998 japonica accessions from the NE region, 397 japonica 144 

from the NC region, and 994 indica from the SC region. From the CC and SW regions 145 

where both indica and japonica are grown, we collected 1295 (CC-I) and 417 (SW-I) 146 

indica accessions and 478 (CC-J) and 465 (SW-J) japonica accessions (Figure 1B, 147 

Supplementary Table 2). This panel of genetic resources provides comprehensive 148 

representation of cultivars from the five major rice-growing regions in China. 149 

Phenotypic variation across different rice-growing regions 150 

To characterize how agronomic traits of rice cultivars adapt to or reflect breeding 151 

preferences across different regions, we evaluated 11 agronomic traits for 3606 of the 152 

6044 accessions at seven field sites across China. All 3606 accessions were grown and 153 

phenotyped at all seven locations, and phenotype data for all seven locations were used 154 

for the GWAS analysis (below). However, we initially characterized each cultivar using 155 

only the phenotype data recorded at the field site closest to its collection location in 156 

order to assess its performance under optimal growth conditions (Figure 1A, 157 

Supplementary Tables 3–6, Supplementary Figure 2). Accessions from the SW-I and 158 

SW-J groups had the latest heading date, i.e., flowering time (>120 days), followed by 159 

the NC group (119.63 ± 11.65 days) and the NE group (102.93 ± 7.26 days). The CC 160 

and SC groups had the earliest heading date (71.00–87.32 days) (Figure 1C, 161 

Supplementary Table 5). The SW-I and SC groups had the highest grain number per 162 
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panicle (>230 grains) (Figure 1D). The NE, NC, CC-I, CC-J, and SW-J groups had 163 

relatively high values of 1000-grain weight, with an average of ~25 g compared with 164 

~21 g for the SW-I and SC groups (Figure 1E). The CC-J and CC-I groups had the 165 

highest yields (>26 g), whereas those of the NE, NC, SW-J, and SC groups were lower 166 

(average 21.96 g) (Figure 1F). Other traits also showed significant differences across 167 

the accession groups (Supplementary Figure 2). Rice cultivars from the different groups 168 

thus exhibited distinct regional phenotypic characteristics when grown under their 169 

optimal conditions, likely shaped by the combined influence of genetic, natural (e.g., 170 

temperature and day length) (Supplementary Figure 5), and human factors (e.g., 171 

cropping systems and dietary preferences). 172 

Genomic sequences, diversity, and population structure 173 

We resequenced the genomes of the 5164 newly collected accessions, obtaining 60.78 174 

terabases (Tb) of sequencing data with an average read depth of 31.21× per accession 175 

(Supplementary Table 1). We aligned these clean reads, together with reads from 880 176 

cultivars and four wild rice accessions published previously, to the O. sativa cv. 177 

Nipponbare IRGPS 1.0 reference genome. In total, we identified 5,694,922 single-178 

nucleotide polymorphisms (SNPs) and 812,306 insertions and deletions (InDels) 179 

(Supplementary Table 7). Of these SNPs, 1,203,875 (21.14%) were located in exons, 180 

874,006 (15.35%) in introns, 749,680 (13.16%) in the 2-kb regions upstream of 181 

transcription start sites, 599,123 (10.52%) in the downstream regions of translation stop 182 

sites, 2,033,682 (35.71%) in intergenic regions, and 234,556 (4.12%) in other regions 183 

(Supplementary Figures 6–7). Among these variants, 644,134 (11.80%) SNPs led to 184 

non-synonymous substitutions, and 46,989 (5.78%) indels caused frameshift mutations 185 

(Supplementary Table 8).  186 

To investigate the genetic population structure and relationships among accessions 187 

from the five major rice-growing regions, we constructed a neighbor-joining (NJ) tree 188 

and performed population structure and Uniform Manifold Approximation and 189 

Projection (UMAP) analyses using 1,477,136 high-quality SNPs (MAF >0.01). The 190 

phylogenetic tree showed a clear distinction between indica and japonica rice 191 
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(Supplementary Figure 8A). However, accessions from different regional groups 192 

exhibited some overlap (Figure 2A), likely reflecting similarities in breeding objectives 193 

and cultivation environments that led to a degree of homogenization over the course of 194 

long-term breeding. To objectively assess the genetic characteristics of modern 195 

cultivars from different regions, we excluded 822 landraces, 14 accessions with unclear 196 

classifications, and the four wild rice accessions, leaving 5208 accessions for 197 

population genetic analysis. A UMAP analysis revealed that the accessions clustered 198 

into seven groups, roughly corresponding to their subspecies and geographic origins 199 

(Figure 2B). ADMIXTURE analysis at K=7 revealed distinct indica (SW-I, CC-I) and 200 

japonica (SW-J, CC-J) groups in the SW and CC accessions, consistent with the UMAP 201 

results (Supplementary Figures 8A and 8B). 202 

The CC-I group had the highest nucleotide diversity (π) (2.98 × 10−3), whereas the 203 

CC-J group had the lowest (1.07 × 10−3) (Figure 2C, Supplementary Figure 8C). This 204 

suggests that the overall high genetic diversity of the CC region mainly originates from 205 

indica rice. The fixation index (FST) was lowest between the NC and CC-J groups 206 

(0.022), followed by the SC and CC-I groups (0.027) and the CC-I and SW-I groups 207 

(0.031). By contrast, the SW-I group was clearly genetically distinct from the NE and 208 

CC-J groups, with relatively high FST values of 0.682 and 0.643, respectively (Figure 209 

2C, Supplementary Figure 8D). To further explore population differentiation, we 210 

assessed linkage disequilibrium (LD) decay and found that it was more rapid in the SC, 211 

SW-I, and CC-I groups than in the NE, NC, CC-J, and SW-J groups (Figure 2D). 212 

Notably, the SW-J group displayed particularly rapid LD decay, consistent with its 213 

higher genetic diversity. 214 

Analysis of allele accumulation showed that the SW-J group contained the largest 215 

number of private alleles (22,979 SNPs), followed by the NE group (1513 SNPs) and 216 

SW-I group (479 SNPs) (Supplementary Figure 9A). Doubleton sharing analysis 217 

revealed that the SC group shared a larger number of SNPs with the CC-I group (95% 218 

of total SNPs) than with any other groups (Supplementary Figure 9B), likely owing to 219 

the geographic proximity of these regions or to similar breeding goals and 220 
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environmental conditions. 221 

Regional variations in allelic combinations of heading-date genes 222 

Flowering time reflects major genetic and phenotypic differences among rice 223 

accessions from different regions (Huang et al., 2011). To explore potential allelic 224 

variations underlying the observed differences in heading date among the seven 225 

accession groups, we examined 47 allelic variants identified in 23 key genes associated 226 

with heading date (Supplementary Table 9). There were no significant differences in 227 

allelic variants of the key flowering regulators Hd3a (Takahashi et al., 2009) and RFT1 228 

(Peng et al., 2021) across groups, but the alternative allele of another key regulator, 229 

Ehd1-2 (Li et al., 2022b), was detected only in the SW-J group (Figure 3A). We also 230 

examined the allele distributions of Ghd7, DTH8, and Hd1, which form complexes 231 

involved in photoperiod sensing and flowering regulation (Zong et al., 2021). The 232 

Ghd7-5 loss-of-function (LOF) allele was present only in the NE group, whereas the 233 

CC-I, SW-I, and SC groups carried the alternative Ghd7-1 and Ghd7-4 alleles (Figure 234 

3A, Supplementary Table 10). This distribution pattern aligns with previous findings 235 

that specific Ghd7 alleles are linked to varietal adaptation (Xue et al., 2008).  236 

We also examined alleles of DTH8, which functions as a flowering suppressor under 237 

long-day conditions and a flowering activator under short-day conditions (Dai et al., 238 

2012; Wei et al., 2010; Yan et al., 2011). The CC-I, SW-I, and SC groups contained two 239 

distinct LOF alleles, DTH8-3 and DTH8-6, whereas the NE, NC, CC-J, and SW-J 240 

groups predominantly contained the reference DTH8 allele (Figure 3A, Supplementary 241 

Table 10). We next analyzed Hd1, whose reference alleles delay flowering under long-242 

day conditions and promote flowering under short-day conditions. The Hd1-7 LOF 243 

allele was found predominantly in the NE group, whereas the Hd1-6 LOF allele was 244 

found in the CC-I, SW-I, and SC groups. By contrast, the NC, CC-J, and SW-J groups 245 

carried the same functional alleles as the reference genome, consistent with the 246 

photoperiod conditions in their corresponding regions (Figure 3A, Supplementary 247 

Table 10). These results suggest that heading-date alleles of different genes function in 248 

accordance with local light availability across different growing regions. 249 
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To investigate the distribution patterns of heading-date alleles, we identified 1163 250 

unique combinations of the 47 allelic variants in key heading-date genes across all 251 

accession groups (Supplementary Tables 10–11). In the NE group, the top five allele 252 

combinations had a combined frequency of 32.95%; in the NC group, 61.50%; in the 253 

CC-J group, 79.10%; and in the SW-J group, 55.26% (Supplementary Tables 12–13). 254 

Notably, the combined frequency of the top five allele combinations was greater than 255 

50% in the NC, CC-J, and SW-J groups but not in the NE group, possibly reflecting 256 

greater temperature variability in the NE region compared with the relatively stable 257 

conditions in the NC, SW, and CC regions (Supplementary Figure 5). In the CC-I, SW-258 

I, and SC groups, the top five allele combinations had combined frequencies of 14.03%, 259 

20.20%, and 20.96% (Supplementary Table 13). We next examined the heading dates 260 

of accessions carrying the top five allele combinations in each group. Whereas the NE, 261 

NC, CC-J, and SW-J groups showed minimal differences in heading date among the 262 

top allele combinations, the CC-I, SW-I, and SC groups exhibited more pronounced 263 

variation among the top allele combinations (Figure 3B). These findings reveal the most 264 

common allele combinations for heading-date genes in different groups of regional 265 

accessions and provide valuable genetic insights for molecular breeding, particularly 266 

for the development of cultivars adapted to diverse rice-growing environments. 267 

On the basis of variations in heading-date genes, we developed a genomic selection 268 

(GS) model to accurately predict flowering time in different growing regions and guide 269 

future rice breeding. On the test dataset, the model demonstrated high robustness, with 270 

Pearson correlation coefficients of 0.84 for GZL, 0.86 for TH, 0.86 for HF, 0.88 for 271 

WH, 0.85 for HZ, 0.86 for KM, and 0.87 for NN (Supplementary Figure 10), 272 

confirming that data on heading-date allele combinations can be used to develop GS 273 

models for molecular breeding and improved regional adaptation of rice. 274 

Genetic selection preferences for agronomic traits across growing regions 275 

To investigate whether preferential selection has led to regional differences in the allele 276 

frequencies of genes associated with agronomic traits, we estimated the frequencies of 277 

favorable alleles for 152 genes linked to various traits, including yield components, 278 
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plant architecture, and aspects of biotic and abiotic stress tolerance (Supplementary 279 

Table 14). The mean frequencies of favorable alleles were 37.44%, 37.64%, 37.56%, 280 

and 36.75% in the NE, NC, CC-J, and SW-J groups, respectively, all of which consisted 281 

of japonica accessions. By contrast, the mean frequencies of favorable alleles were 282 

46.24%, 45.30%, and 47.14% in the CC-I, SW-I, and SC groups, indicating that 283 

desirable alleles were more prevalent in indica cultivars (Figure 3C, Supplementary 284 

Tables 15–16). 285 

The frequencies of favorable alleles for specific traits varied across groups. For 286 

instance, the favorable Gn1a-1 genotype of the grain-number was detected at 287 

frequencies of 99.83%, 100.00%, and 100.00% in the CC-I, SW-I, and SC groups, 288 

respectively, but at frequencies of only 55.57%, 11.23%, 2.58% and 70.79% in the NE, 289 

NC, CC-J, and SW-J groups. Similar patterns of favorable allele frequency were 290 

observed in other grain number-related genes, including LAX1-2, NOG1, GNP1, APO1-291 

2, and BG2-1. In addition, an allele of OsMYB8 associated with early floret opening 292 

time was present at frequencies of >89% in the CC-I, SW-I, and SC groups but <2% in 293 

the NE, NC, CC-J, and SW-J groups. Among grain shape-related genes such as GL3.2, 294 

GS5-2, and OsSPL12, alleles associated with broad grains had combined average 295 

frequencies of 84.65%, 95.50%, 96.25%, and 83.07% in the NE, NC, CC-J, and SW-J 296 

groups but 20.21%, 29.31%, and 20.81% in the CC-I, SW-I, and SC groups (Figure 3C, 297 

Supplementary Table 16), consistent with the characteristically wider grains of japonica 298 

rice. 299 

Favorable alleles involved in plant architecture and grain flavor have been subjected 300 

to widescale selection, likely contributing to the mean frequencies of 53.45%, 54.17%, 301 

54.83%, and 52.13% for favorable alleles of plant architecture-related genes in the NE, 302 

NC, CC-J, and SW-J groups and mean frequencies of 40.94%, 41.89%, and 41.05% for 303 

these favorable alleles in the CC-I, SW-I, and SC groups. Such relatively high 304 

frequencies of favorable alleles were observed across all groups. In particular, the 305 

frequencies of favorable IL13, SLR1, SBI/OsGA2ox4, and OsbHLH174 alleles 306 

exceeded 72% in all groups. Notably, the D61-2, sd1-4, TAC1, and TIPS-11-9 favorable 307 
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alleles were present at high frequencies in the NE, NC, CC-J and SW-J groups (>99%), 308 

whereas D2, APO1-1, and TIG1 frequencies were higher in the CC-I, SW-I, and SC 309 

groups (>61%) (Figure 3C, Supplementary Table 16). 310 

Favorable alleles related to grain taste quality were present at combined average 311 

frequencies of 44.70% in japonica accessions and 44.36% in indica accessions. Among 312 

these genes, the favorable alleles GBSSI-2, GBSSI-5, and GBSSI-6 had a combined 313 

average frequency of 91.58%, indicating positive selection for these alleles in all groups. 314 

Favorable alleles for genes involved in biotic and abiotic stress tolerance, fertilizer use 315 

efficiency, seed morphology, and other traits were more prevalent in indica cultivars 316 

(Figure 3C, Supplementary Table 16). Together, these results indicate that average 317 

favorable allele frequencies tended to be slightly higher in the CC-I, SW-I, and SC 318 

groups than in the NE, NC, CC-J and SW-J groups, with the exception of those related 319 

to plant architecture and some abiotic stress traits, which were higher in japonica 320 

accessions, and those related to grain flavor, which did not differ markedly among 321 

accession groups. 322 

Genomic selection signatures for different rice-growing regions 323 

Continuous artificial selection has driven directional improvements in the rice genome 324 

and corresponding phenotypic changes. To identify genomic signatures of selection in 325 

the five major rice-growing regions, we performed identity-by-descent (IBD) analysis 326 

(Figure 4A–C, Supplementary Figures 11–12, Supplementary Table 17) and identified 327 

a total of 1589 IBD segments. The NE group contained the highest number (404) and 328 

the SW-J group the lowest (266) (Supplementary Table 18). The annotation of these 329 

segments revealed that they contained 10,778 genes, of which 77 have been reported 330 

for the key agronomic trait QTGs (Supplementary Table 19). Notably, chromosomes 1, 331 

2, and 3 exhibited higher densities of IBD segments (Supplementary Figure 12); GO 332 

enrichment analysis indicated that the genes in these segments were enriched in DNA 333 

binding, transmembrane transport and transporter activity functions (Supplementary 334 

Table 20), suggesting more intense selection pressures on these genomic regions during 335 

breeding. 336 
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Approximately 40.28% of the 1589 IBD segments were shared among two or more 337 

accession groups (Figure 4C), indicating convergent evolution or similar environmental 338 

selection pressures. Specifically, the IBD segment on chromosome 2 (~26 Mb) shared 339 

by the NC and NE groups was enriched in genes associated with cold and salt tolerance, 340 

reflecting the similar breeding goals in these two geographic regions (Supplementary 341 

Table 17). Some IBD segments were specific to individual groups: the NE group 342 

contained 176 (11.08%) such segments, the NC group 132 (8.31%), the SC group 141 343 

(8.87%), the CC-I group 97 (6.10%), the CC-J group 161 (10.20%), the SW-J group 344 

129 (8.17%) and the SW-I group 113 (6.99%).  345 

To further reveal the association of these IBD segment with adaptive traits, we 346 

performed enrichment analysis of group-specific IBD segment. In the NE group, 347 

photoperiodism and seed development functions were significantly enriched, reflecting 348 

selection for yield optimization and disease resistance in a cold, short-season climate 349 

(Figure 4D). In the NC group, flower development and stress response functions were 350 

significantly enriched, indicating selection for reproductive resilience and stress 351 

tolerance in variable conditions. In the SC group, stress response and pest defense 352 

functions were significantly enriched, suggesting selection for stress tolerance and pest 353 

resistance in a humid environment. In the CC-I group, post-embryonic and metabolic 354 

functions were significantly enriched, suggesting selection for growth efficiency in 355 

productive conditions. In the CC-J group, embryo and stress response functions were 356 

significantly enriched, indicating selection for embryo vigor and broad adaptation in 357 

variable environments. In the SW-I group, abiotic stress and transcription functions 358 

were significantly enriched, reflecting selection for stress tolerance in diverse climates. 359 

In the SW-J group, stress and nitrogen regulation functions were significantly enriched, 360 

pointing to selection for resilience and nutrient efficiency in challenging conditions 361 

(Supplementary Figure 13). These findings highlight region-specific environmental 362 

adaptations. 363 

At the gene level, heading date (OsGI, Hd6) were notably fixed in the NE group; 364 

biotic stress responses and fertilizer utilization genes (OsCd1, SLG1, TOND1) were 365 
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strongly selection in the SC group; and in the CC group, grain quality (OsAAP6, 366 

OsACS6) and abiotic stress tolerance (OsTPP7) were the focus of selection in the CC 367 

group. The NC group showed selection on the drought tolerance related gene GH3-2, 368 

and the SW group had accumulated multiple stress-resistance genes (TT3.1, HIS1, Bsr-369 

d1). Fixed haplotypes were identified at the GW5 locus (in the SW-I group) and the 370 

GW8 locus (in the SW-J group) (Figure 4E, Supplementary Table 19), highlighting 371 

strong selection for grain shape and quality (Liu et al., 2017; Wang et al., 2012) . These 372 

findings provide insight into how IBD segments have contributed to population-specific 373 

adaptation and functional diversity in rice. 374 

GWAS of 53 phenotypes for key agronomic traits 375 

To dissect the genetic basis of important agronomic traits in rice and advance molecular 376 

design breeding, we performed field experiments across five major rice-growing 377 

regions in China and systematically evaluated 3606 rice accessions. We obtained 212 378 

phenotypic datasets, each consisting of data for one of 53 phenotypes from one of 19 379 

distinct locations measured in one of two years; not all phenotypes were measured in 380 

all locations or years (Figure 5A–B, Supplementary Figures 2–4, Supplementary Tables 381 

3–5). We then used these datasets to perform a large-scale GWAS for all 212 phenotypic 382 

datasets. The 53 phenotypes for key agronomic traits could be divided into four 383 

categories: abiotic stress (28 phenotypes), yield components (10 phenotypes), biotic 384 

stress (14 phenotypes), and heading date (1 phenotype). 385 

We identified a total of 3131 QTLs that were significantly associated with 53 386 

phenotypes (Figure 5C, Supplementary Figures 14–19, Supplementary Table 21). 387 

Among them, 450 QTLs showed significant associations with the same phenotype 388 

across at least two phenotyping locations (Supplementary Table 22). We also identified 389 

125 QTLs were shared among different phenotypes, suggesting the potential presence 390 

of pleiotropic genes at these loci. Additionally, 2642 QTLs exhibited strong association 391 

signals in only one location/year but no associations in others. For example, we 392 

identified several significant GWAS signals on chromosome 11 associated with heading 393 
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date in Hefei but were not detected in other locations (Supplementary Figure 20). A 394 

similar pattern was observed for other traits, such as plant height in Wuhan, where 395 

significant GWAS signals were uniquely detected on chromosome 8 (Supplementary 396 

Figure 22). These findings highlight the significant role of genotype-environments 397 

interactions in shaping the phenotypic variation. 398 

Grain shape is a fundamental trait that determines yield and quality, and 399 

manipulation of grain shape can be essential for improving rice cultivars. We identified 400 

a major peak on chromosome 3 in which the lead SNP (Chr03: 35,155,927) was 401 

significantly associated with grain length (P = 1.66×10–7) (Figure 5D). Linkage 402 

disequilibrium analysis of the peak region revealed that the lead SNP was located within 403 

a ~60-kb block (from 35,151,384 to 35,214,566) that included 14 functional genes 404 

(Supplementary Table 23). Interestingly, this locus overlapped with an IBD segment in 405 

the SW-J group (Figure 5E). We investigated the function of these 14 genes and found 406 

that OsGL3.6 (LOC_Os03g62060/Os03g0836800), annotated as an indole-3-acetic 407 

acid (IAA) amino acid hydrolase gene, was most likely to be the causal gene, as IAA-408 

related genes have previously been reported to regulate rice grain size (Ma et al., 2023a). 409 

Haplotype analysis showed that OsGL3.6 had three major haplotypes in 3547 410 

accessions (Figure 5F). Hap1 was present at a frequency greater than 0.95 in the NE, 411 

NC, CC-J, and SW-J groups, whereas Hap2 and Hap3 frequencies were higher in the 412 

CC-I, SW-I, and SC groups (Figure 5G). Further analysis revealed that Hap1 and Hap2 413 

were associated with a long-grain phenotype, whereas Hap3 conferred a short-grain 414 

phenotype (Figure 5H–I) (P<0.05), providing further evidence that OsGL3.6 is 415 

involved in regulating grain length. To confirm the function of OsGL3.6, we knocked 416 

out this gene in the japonica cultivar Zhonghua11 (ZH11) (Figure 5J, Supplementary 417 

Table 24). Compared with wild-type plants (grain length, 6.52 mm), the two 418 

independent knockout lines osgl3.6-1 (6.32 mm, P < 0.05) and osgl3.6-2 (6.35 mm, P 419 

< 0.05) had significantly shorter grains (Figure 5K). Therefore, OsGL3.6 represents a 420 

promising target for regulation of rice grain shape in breeding programs. These analyses 421 

demonstrate how large-scale GWAS and IBD approaches can facilitate rice research 422 
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and breeding. 423 

Accelerating rice breeding with RiceAtlas 424 

By integrating genomic and phenotypic datasets for the 6044 accessions examined here, 425 

3010 Asian cultivars from the 3K-Rice project (Wang et al., 2018), and 404 rice 426 

accessions reported by (Wei et al., 2021), we constructed the comprehensive rice 427 

database RiceAtlas (https://www.cgris.net/RiceAtlas). RiceAtlas consists of five 428 

modules: Germplasm, Phenotype, GWAS, Variation, and Breeding (Figure 6A). It 429 

complements existing tools by integrating vast germplasm and genetic resources to 430 

facilitate various rice breeding strategies. It can be used to comprehensively assess 431 

region-specific ecological backgrounds, complementarity of allelic variations, and 432 

genetic similarity to obtain donor-parent recommendations for rice breeding design. 433 

To demonstrate the breeding design function of RiceAtlas, we used it to 434 

successfully improve the grain shape of Suigeng4 (SG4) within two years. The SG4 435 

cultivar has been widely planted in large areas of the NE region for the past 20 years. 436 

It features a short and round grain phenotype, with desirable flavor and quality profiles, 437 

and it is still cultivated in some parts of the NE region. However, breeders hope to 438 

develop a long-grain version of SG4 to meet market demands. To increase grain length 439 

in SG4, we used the breeding design system in RiceAtlas to guide our crossing strategies. 440 

As recommended by RiceAtlas, we selected Zhongkefa8 (ZKF8) as the donor to 441 

increase SG4 grain length. After a single backcross and subsequent genotyping of the 442 

progeny population, we obtained a target homozygous SG4 line (Figure 6B–C). 443 

Phenotyping of the introgression lines showed that grain length was significantly 444 

increased, while the flavor profile and ecological suitability of SG4 were retained 445 

(Figure 6D). Importantly, this entire process was completed within just two years, 446 

representing a substantial improvement in the rate and precision of breeding outcomes 447 

relative to traditional approaches. These results provide a proof-of-concept 448 

demonstration that RiceAtlas can serve as a key resource and a powerful, versatile tool 449 

for rice breeding design.  450 

Jo
urn

al 
Pre-

pro
of



18 

 

Discussion 451 

We generated large-scale genotype and phenotype data for thousands of modern 452 

cultivars from five major rice-growing regions, collectively covering 99% of China’s 453 

annual rice cultivation area. Using these data, we characterized the genetic variation in 454 

modern Chinese rice cultivars and revealed genomic signatures of selection in cultivars 455 

from different regions. We identified numerous loci linked to key agronomic traits, 456 

including heading date, yield, and stress responses, which will be useful for advancing 457 

research in rice functional genomics. Leveraging these extensive data on rice 458 

phenotypes, population genomics, and GWAS cohorts, we developed the RiceAtlas 459 

platform to support rice research and breeding. RiceAtlas features an intuitive query 460 

interface and practical tools, including a precise and efficient system for the 461 

recommendation of parental lines to facilitate molecular breeding design and accelerate 462 

the breeding process. 463 

China’s vast geographic expanse and significant north-south latitude differences 464 

have resulted in distinct regional adaptations and selection preferences in modern rice 465 

breeding. Through an initial phenotypic analysis of local cultivars grown in their native 466 

rice-growing regions, we observed that heading date exhibits clear regional 467 

characteristics. Cultivars from the NC and SW regions have the longest heading dates. 468 

In the SW region, this is primarily due to high altitudes with low annual average 469 

temperatures, which slow rice growth (He and Tang, 2023). In the NC region, the longer 470 

heading date occurs because there are minimal constraints from subsequent crops and 471 

temperatures exceed 20°C until mid-October, conditions that are favorable for grain 472 

filling. Breeders in the NC region thus favor cultivars with a long growth duration in 473 

order to maximize yield and profits. In the NE group, heading dates average around 100 474 

days. This reflects the high latitude, extended photoperiod, and low temperatures of the 475 

NE region. Moreover, rice in this region must be harvested before October 15 owing to 476 

a sharp temperature decline at the end of September ((Dong et al., 2023). By contrast, 477 

the CC and SC groups have shorter heading dates, typically between 70 and 80 days, 478 

primarily to accommodate subsequent crops or the double-cropping rice system (Xian 479 
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et al., 2023). 480 

Across different growing regions, each subspecies exhibits similar selection trends 481 

in plant architecture, panicle type, and grain shape. Overall, indica varieties from the 482 

CC, SW, and SC regions are taller, with longer panicles, more grains per panicle, and 483 

longer and narrower grains than japonica varieties from the NC, NE, CC, and SW 484 

regions. These differences are consistent with the fundamental differentiation between 485 

the indica and japonica subspecies. Accessions from all regions had a similar tiller 486 

number of 7 to 10, consistent with the concept of ideal plant architecture in rice breeding 487 

(Wang et al., 2017). Notably, the SC region appears to prefer slender-grained varieties, 488 

as the SC group had narrower grain widths and higher grain length-to-width ratios 489 

compared with the SW-I and CC-I groups, consistent with the preference for slender 490 

indica rice grains in South China. The CC-I and CC-J groups had the highest 1000-491 

grain weight and single-plant yield among all groups, highlighting the fact that modern 492 

varieties in the CC region are bred for high single-plant yields in order to achieve high 493 

yields per unit area (Xiao et al., 2021). 494 

The SC, CC, and SW groups exhibited higher genetic diversity than the NC and 495 

NE groups, consistent with the well-established finding that indica rice generally 496 

exhibits greater genetic diversity than japonica rice (Campbell et al., 2020) Notably, 497 

both the SW-I and SW-J groups displayed high genetic diversity, supporting the notion 498 

that Southwest China serves as a major center of rice genetic diversity (Liu et al., 2022). 499 

For analyzing key heading-date allelic combinations, we integrated 23 major 500 

heading-date genes—more than previous studies focused on only the Ghd7–Hd1–501 

DTH8 complex (Cai et al., 2021; Zhou et al., 2021)—thus enabling us to characterize 502 

the genetic basis of heading-date regulation in greater detail. Favorable alleles of genes 503 

associated with plant architecture and abiotic stress responses (e.g., OsMYB2, OsCd1, 504 

OsCBL10, Sd1-4, and TAC1) occurred at higher frequencies in the NE, NC, CC-J, and 505 

SW-J groups, suggesting strong selection for such traits in these regions. By contrast, 506 

the SW-I, CC-I, and SC regions exhibited more intense selection on genes associated 507 

with biotic stress resistance, yield, and nutrient use efficiency (e.g., GW8, APO1, GNP1, 508 
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OsLG3, and TOND1). Differences in the frequencies of favorable alleles across regions 509 

suggest that many beneficial alleles have yet to be fully utilized and highlight the 510 

potential for further enhancement of modern rice cultivars.  511 

Through IBD analysis, we revealed the breeding preferences and genetic 512 

characteristics of each region. The NE region had accumulated the largest number of 513 

IBD segments, likely reflecting the sustained emphasis on early maturity and cold 514 

tolerance over prolonged breeding cycles, consistent with previous reports (Zhang et 515 

al., 2014). Genes present in IBD segments appeared to be associated with local stress 516 

factors. For instance, in the NC region, the salt-alkali tolerance genes were under strong 517 

selection, whereas the SC region exhibited selection for disease and pest resistance 518 

genes. In the CC region, genes associated with stress tolerance and grain quality were 519 

subject to intensive selection, and in the SW region, multiple stress-tolerance and 520 

quality-related genes were strongly favored. 521 

The marker density and sample size used in this study were sufficient for the 522 

detection of common high-effect alleles in the population. We identified a total of 3131 523 

QTLs associated with key agronomic traits, providing insight into the genetic 524 

architecture and locus co-localization of various traits. Among the identified QTLs, 525 

16.6% were detected consistently across multiple locations or years, whereas most were 526 

observed in a single environment. This pattern highlights strong environmental 527 

specificity or genotype–environment interactions, offering valuable insights for future 528 

rice adaptive breeding programs. Of the 3131 identified QTLs, 96 overlapped with 529 

previously reported loci of corresponding quantitative trait genes. Over a thousand 530 

QTLs were newly detected, from which we successfully cloned a novel gene 531 

(LOC_Os03g62060) associated with grain length in rice. The discovery of numerous 532 

loci associated with diverse agronomic traits provides a foundation for further genetic 533 

improvement of rice through marker-assistant selection or genomic selection. 534 

To fully leverage genetic variation and phenotypic information for accelerated 535 

breeding improvement, we integrated multiple datasets to construct the comprehensive 536 

RiceAtlas database. Existing public databases, such as RiceVarMapv2.0 (Zhao et al., 537 
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2021; Zhao et al., 2015), MBKBASE (Peng et al., 2020), and Rice SNP-Seek 538 

(Mansueto et al., 2017), focus primarily on multi-omics data for fundamental research 539 

queries (e.g., genetic variants and gene expression data). They place less emphasis on 540 

large population sizes and the integration of genetic, phenotypic, and environmental 541 

data, making them somewhat less useful as “one-stop” platforms for design breeding 542 

or targeted crop improvement. To address these issues, Wei et al. (2021) constructed the 543 

RiceNavi system, based on 348 QTNs for 404 rice accessions, to enable rapid and 544 

precise breeding design, demonstrating its use for improvement of rice through 545 

pyramiding of favorable variants.  546 

RiceAtlas complements and expands upon these existing tools by integrating a larger 547 

number of accessions, a broader range of phenotypic data collected in multiple 548 

environments, and many newly identified QTNs, including environment-specific QTNs, 549 

offering a user-friendly, multifunctional platform that operates across multiple scales. 550 

By incorporating sequencing data from multiple studies and accounting for donor 551 

phenotypes, regional adaptability, and background genetic similarity, RiceAtlas can 552 

help breeders to aggregate advantageous alleles, facilitating rapid genetic improvement. 553 

In addition, the genetic resources available at RiceAtlas support the training of GS 554 

models. A GS model for heading-date prediction is already available, further expanding 555 

the utility of RiceAtlas in breeding programs. As more GS models are developed for 556 

additional traits, RiceAtlas aims to become a powerful, yet user-friendly, intelligent 557 

platform for rice design breeding. 558 

Nonetheless, the present study has some limitations. Owing to the complexity of 559 

environmental conditions, our multi-site phenotyping and GWAS analyses in five major 560 

rice-growing regions may not fully capture local microclimates (e.g., variations in 561 

photoperiod, temperature gradients, and altitude). Consequently, the identification of 562 

critical QTLs and a comprehensive understanding of cultivar adaptations to light, 563 

temperature, and altitude remain partially constrained. Although data were collected in 564 

multiple environments, we have not yet performed an in-depth investigation of 565 

environmental interactions. Limited information on gene–gene and gene–environment 566 
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interactions means that RiceAtlas currently supports only relatively simple, single-trait 567 

breeding designs. Nonetheless, our findings provide a genomic overview of the genetic 568 

improvements observed in modern cultivated rice across China’s five major rice-569 

growing regions, together with a rich repository of genetic variation. This work lays a 570 

solid foundation for revealing the molecular basis of advantageous rice traits and for 571 

devising more accurate and efficient genome-based breeding strategies.  572 

Jo
urn

al 
Pre-

pro
of



23 

 

Materials and Methods 573 

Plant materials 574 

The diversity panel used in this study comprised 6044 accessions from 25 provinces, 575 

municipalities, and autonomous regions, covering five rice-growing regions in China 576 

(SC, CC, SW, NC, and NE). The panel was curated based on the agroecological 577 

distributions of the cultivars, their cultivation acreages, and prior analyses of their 578 

phenotypic traits, genetic diversity, and nucleotide variation (Cui et al., 2022; Han et 579 

al., 2022; Liu et al., 2022; Liu et al., 2023). Of the 6044 accessions, 5164 were newly 580 

collected for this research, and 880 were selected from accessions previously reported 581 

by our laboratory (Cui et al., 2022; Han et al., 2022; Liu et al., 2023). We also included 582 

four wild rice accessions used to root the phylogenetic tree. To maintain a focus on 583 

modern cultivars, we excluded 822 landraces and 14 misclassified accessions, resulting 584 

in a final set of 5208 cultivars used for analyses of diversity, causative variants, and 585 

artificial selection. To enhance the diversity of donor parents for breeding tool 586 

development, we used the full set of 6044 accessions in the Breeding Design module 587 

of the RiceAtlas platform. 588 

Phenotyping 589 

We selected 3606 of the 6044 cultivars for phenotyping. To systematically evaluate 590 

variations in agronomic traits across rice-growing regions, we grew all 3606 cultivars 591 

at seven field sites in core rice-cultivation areas that represented the five major rice-592 

growing regions. We evaluated key quantitative traits over two consecutive growing 593 

seasons (2022–2023), including heading date and yield components. The field sites 594 

were located in GZL (124°44′ E, 43°27′ N), Jilin Province, representing the NE region; 595 

TH (118°17′ E, 39°18′ N), Hebei Province, representing the NC region; KM (103°6' E, 596 

25°20' N), Yunnan Province, representing the SW region; and NN (108°11′ E, 22°48′ 597 

N), Guangxi Zhuang Autonomous Region, representing the SC region. Because the CC 598 

region accounts for nearly half of China’s rice cultivation area, three field sites were 599 
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established in this region: HF (117°12′ E, 31°48′ N), Anhui Province; HZ (119°94′ E, 600 

30°8′ N), Zhejiang Province; and WH (114°2′ E, 30°42′ N), Hubei Province. 601 

Accessions were planted in four-row plots, each containing 16 plants, with 26.7 602 

cm between rows and 10 cm between plants. The alleys between the plots were 50 603 

cm wide. An augmented design was used, consisting of 73 blocks (60 m × 1.5 m), 604 

each containing 50 entries across a total of 200 rows. The 73 blocks were divided 605 

into five field sections, each physically separated from the others by ridges. Within 606 

each field section, the blocks were further separated by Additionally, a 1.0-meter 607 

buffer zone was established around each field section to minimize edge effects. 608 

Standardized field management practices were used across all experimental blocks 609 

to ensure phenotypic consistency. Ten plants (excluding border plants) were 610 

randomly selected from each plot for phenotyping. Measurements included heading 611 

date, plant height, panicle length, tiller number, grain per panicle, seed-setting rate, 612 

1000-grain weight, grain length, grain width, grain length-to-width ratio, and yield 613 

per plant, following the standard evaluation system for rice (Han et al., 2006). 614 

Heading date, plant height, panicle length, and tiller number were measured directly 615 

in the field. Heading date was recorded as the number of days from sowing to the 616 

emergence of 50% of the inflorescences above the flag-leaf sheath. The remaining 617 

grain-related traits, including grain number per panicle, seed-set rate, 1000-grain 618 

weight, grain length, grain width, grain length-to-width ratio, and yield per plant, 619 

were measured in the laboratory after harvest. 620 

In addition to evaluating basic agronomic traits, we performed resistance 621 

assessments to identify quantitative-trait genes associated with disease and pest 622 

resistance, as well as stress tolerance, for use in rice breeding. These resistance traits, 623 

combined with data on basic agronomic traits, were used for GWAS analyses and for 624 

breeding design in the RiceAtlas platform. The detailed methods used to assess 625 

resistance to biotic and abiotic stresses (e.g., leaf blast, neck blast, bacterial blight, 626 

brown planthopper, southern rice black-streaked dwarf virus, sheath blight, drought, 627 

salt, cold, high temperature, and sprouting) are provided in the Supplemental Note.  628 
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To ensure the accuracy and reliability of the phenotypic data, we manually 629 

reviewed the data to identify and correct inconsistencies, such as decimal point errors, 630 

during data entry. Trait assessments were performed over two consecutive years to 631 

obtain fully representative phenotypic data. The mean and standard deviation (SD) were 632 

calculated for each trait, and outliers more than three SDs from the mean were excluded. 633 

Phenotypic data that were unavailable due to environmental factors were treated as 634 

missing values. The verified and cleaned dataset, free from outliers and invalid entries, 635 

was used as input for phenotypic and GWAS analyses. 636 

DNA isolation and genome sequencing 637 

Genomic DNA (1.5 μg per sample) was isolated following standard protocols and used 638 

to prepare sequencing libraries with the MGIEasy FS DNA Prep kit (BGI, China). 639 

Unique index codes were assigned to each sample. DNA was sonicated to an average 640 

fragment size of ~350 base pairs (bp), then end-polished, A-tailed, and ligated to full-641 

length adapters, followed by PCR amplification. The PCR products were purified using 642 

the AMPure XP bead system. The library size distribution was evaluated using an 643 

Agilent 2100 Bioanalyzer, and library concentrations were quantified by real-time PCR. 644 

Sequencing was performed on the DNBSEQ-T7 platform, generating approximately 645 

60.78 Tb of clean sequence data for the 5164 newly collected accessions as 150-bp 646 

paired-end reads. 647 

Sequence quality checking and filtering 648 

To minimize sources of artificial bias, such as low-quality paired reads caused by base-649 

calling errors, duplicate reads, and adaptor contamination, we applied the filtering 650 

criteria used in a previous study (Li et al., 2022a). The following reads were excluded: 651 

(i) reads that contained ≥10% unidentified nucleotides (N); (ii) reads in which more 652 

than 10 nucleotides aligned to the adaptor, permitting ≤10% mismatches; (iii) reads in 653 

which more than 50% of bases had a Phred quality below 5; and (iv) potential PCR 654 

duplicates generated during library construction. 655 
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Sequence alignment, variant calling, and annotation 656 

The retained high-quality paired-end reads were mapped to the rice O. sativa cv. 657 

Nipponbare IRGPS 1.0 reference genome (Kawahara et al., 2013) using Burrows–658 

Wheeler Aligner (BWA) software (Li and Durbin, 2009) with the command ‘mem -t 4 659 

-k 32 –M’. To reduce PCR-induced mismatches, duplicate reads were removed with 660 

SAMtools v0.1.1. Genomic variants were identified in GVCF format using the 661 

HaplotypeCaller module from the Genome Analysis Toolkit (GATK) (McKenna et al., 662 

2010). The GVCF files were merged, and a raw population genotype file containing 663 

SNPs and InDels was created. The data were filtered using the following criteria: 664 

individual read depth ≥4, genotype quality ≥40, number of genotypes at each position 665 

= 2, minor allele frequency (MAF) ≥0.01, and missing data rate ≤0.2. This resulted in 666 

the identification of 5,694,922 SNPs and 812,306 Indels. These variants were annotated 667 

using ANNOVAR software (version 2013-05-20) (Wang et al., 2010), categorizing 668 

them by genomic location (intergenic regions, upstream/downstream of transcription 669 

start/stop sites, coding sequences, and introns).  670 

Phylogenetic tree and population structure 671 

We assessed population genetic structure using the Bayesian clustering program 672 

fastStructure v.1.0 (Raj et al., 2014). K values from 2 to 14 were tested to determine the 673 

optimal subpopulation size based on the cross-validation error at the inflection point. 674 

Principal component analysis was performed with GCTA software (Yang et al., 2011), 675 

which generated a genetic relationship matrix using the ‘–make-grm’ command. The 676 

top three principal components were then estimated using ‘–pca3’. VCFtools v0.1.15 677 

(Danecek et al., 2011) was used to calculate nucleotide diversity and the fixation index 678 

in 10-kb sliding windows using 5-kb steps, enabling us to quantify genomic 679 

differentiation across different rice-growing regions. 680 

Linkage-disequilibrium analysis 681 

To evaluate the pattern of linkage disequilibrium (LD), we calculated the squared 682 

correlation coefficient (r2) between pairwise SNPs using PopLDdecay (Zhang et al., 683 
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2019), with parameters set to ‘-MaxDist 1000kb’. Average r2 values were computed for 684 

pairwise markers in 10-kb windows and then averaged across the genome. 685 

GWAS analyses 686 

GWAS analyses were performed separately for 212 datasets containing data for 53 687 

phenotypes using EMMAX software (Kang et al., 2010) with all 5,694,922 high-quality 688 

SNPs and 812,306 high-quality Indels. A kinship matrix, derived from pairwise genetic 689 

similarities, was used as the variance–covariance matrix for random effects. To correct 690 

for population stratification, the top ten principal components (PC1–PC10) were used 691 

for GWAS with all accessions, the top thirty principal components (PC1–PC30) for 692 

japonica rice accessions, and the top thirty-five principal components (PC1–PC35) for 693 

indica rice accessions. The number of independent SNPs was estimated to be 1,477,136, 694 

and the genome-wide significance threshold was determined using a Bonferroni 695 

correction (α = 1). Candidate regions were then expanded to 100 kb centered on the 696 

GWAS signal peaks to identify candidate genes. 697 

Lead SNP calculation 698 

Genome-wide blocks were defined using PLINK v1.9 software (Purcell et al., 2007) 699 

with the parameters ‘--blocks --blocks-strong-lowci 0.70 --blocks-strong-highci 0.98’, 700 

following the approach described by (Cervantes-Perez et al., 2023). Multiple SNPs 701 

within each block that exceeded the threshold were clustered, and the SNP with the 702 

lowest P-value in each cluster was identified as the lead SNP. Independent SNPs that 703 

exceeded the threshold but were not located within a block were retained. 704 

Identification of genotypes with favorable alleles 705 

On the basis of the lead SNP at each locus, the allele type (reference allele or alternative 706 

allele) that conferred better agronomic performance (for example, higher values for 707 

panicle length, tiller number, grain per panicle, grain length, grain width, seed-setting 708 

rate, 1000-grain weight, or yield per plant) was defined as the favorable allele. To 709 

minimize the influence of confounding factors, lead SNPs that were linked to the same 710 
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trait but exhibited different favorable genotypes in different locations or years were 711 

excluded from consideration. We used the R package lme4 (Bates et al., 2015) to 712 

compute the phenotypic variance accounted for by each lead SNP. 713 

Selective sweep identification  714 

To detect potential selective sweeps between different rice-growing regions, we 715 

analyzed genetic differentiation between populations (FST) and diversity (π) within 716 

populations. Candidate outliers, indicative of selective sweeps, were identified as the 717 

top 5% of log2 (π ratio) values and FST values. 718 

Data preprocessing for Genomic selection 719 

We excluded 51 samples with missing heading-date phenotypic values from 3606 720 

accessions and retained 3555 samples. These samples were randomly divided into a 721 

training set of 2844 samples and a test set of 711 samples in an 8:2 ratio. During data 722 

splitting process, we set a random seed to prevent the emergence of specific patterns or 723 

correlations between different subsets of the dataset, ensuring the representativeness of 724 

the training and testing sets.  725 

Based on the 28 alleles associated with the heading-date as input features to the 726 

model to perform training. For machine learning, genotypic data should first be 727 

converted to numeric features. We use PLINK to encode SNP information as 0, 1, and 728 

2, where 0 represents the homozygous genotype (AA) of the two major alleles, 1 729 

represents the heterozygous genotype (AB) of one major and one minor allele, and 2 730 

represents the homozygous genotype (BB) of the two minor alleles. 731 

Model training and evaluation 732 

LightGBM has been demonstrated by Yan et al. to be effective in genomic selection 733 

GS-assisted breeding (Yan et al., 2021). We employed LightGBM to construct GS 734 

model for predicting heading-date. To further optimize the LightGBM model, we 735 
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utilized a grid search to determine the optimal hyperparameters. The source code of 736 

LightGBM is freely available on GitHub: https://github.com/jiekesen/Lightgbm. 737 

Cross-validation is a commonly used technique for assessing the results of 738 

statistical analysis. It can be used to objectively evaluate the predictive performance of 739 

a model. In this study, we use 10-fold cross-validation to assess the predictive 740 

performance of the model on the training set and the generalization ability of the model 741 

using the testing set. The 10-fold cross-validation was repeated for 100 runs. The 742 

Pearson correlation coefficient is used to assess the predictive performance of the model. 743 

A coefficient closer to 1 indicates a higher predictive accuracy of the model. 744 

Gene Ontology analysis 745 

Gene Ontology (GO) annotations for rice genes were obtained from the Ensembl Plants 746 

Genes database (https://plants.ensembl.org/biomart/martview/). GO enrichment 747 

analysis was performed using agriGO v.2.0 (Tian et al., 2017) with significance 748 

determined by Fisher’s exact test. Enrichment results with more than five annotations 749 

and a Bonferroni-corrected false discovery rate of <0.05 were visualized using the R 750 

package ClusterProfiler v.3.10.0 (Yu et al., 2012). 751 

Pairwise identity-by-descent detection 752 

All SNPs were used to identify pairwise shared haplotypes across different groups using 753 

IBD analysis as described previously (Bosse et al., 2014); with minor modifications. 754 

The approach involves two main steps: identifying pairwise IBD regions and 755 

calculating shared haplotype frequencies. First, all individuals were phased using the 756 

fastPhase function in Beagle v5.4 (Browning and Browning, 2007). Pairwise shared 757 

haplotypes were extracted using the Beagle RefinedIBD function (Browning and 758 

Browning, 2013). Second, to characterize the frequency of shared haplotypes along 759 

each chromosome, the genome was divided into 50-kb bins, and the number of recorded 760 

IBD segments between different groups was quantified for each bin. The bins were then 761 

ranked based on the number of IBD segments, with the top 20% identified as candidate 762 

regions. To further enhance the confidence of the analysis, genetic diversity (π) was 763 
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introduced to correct for potential false positives in high-frequency IBD segments. The 764 

top 20% of bins with the lowest genetic diversity were selected and compared with the 765 

top 20% of bins ranked by IBD segment counts, and their intersection was defined as 766 

the set of candidate bin regions. 767 

Plasmid construction 768 

Our GWAS analysis identified OsGL3.6 as a high-confidence candidate gene associated 769 

with grain length. This locus, located on chromosome 3 (Chr03: 35,155,927) within a 770 

large LD block (60 kb), exhibited a strong association signal in Manhattan plots. We 771 

therefore performed gene editing of OsGL3.6 using the CRISPR/Cas9 method. 772 

Specifically, OsGL3.6 targeting sequences were amplified and inserted into the 773 

pYLgRNA-OsU6 vector as described by (Ying et al., 2018). These constructs were 774 

confirmed by DNA sequencing and introduced into Agrobacterium tumefaciens strain 775 

EHA105 for Agrobacterium-mediated transformation into the O. sativa ssp. japonica 776 

cultivar ‘ZH11’. Homozygous T2 seeds from all transgenic plants were used for 777 

subsequent analyses. All primers used are listed in Supplementary Table 23. 778 

Breeding tools 779 

To enhance specific traits in a given sample or breeding line, the selection of appropriate 780 

donor parents is essential. By analyzing a sample’s allelic variants and integrating allele 781 

effects, the RiceAtlas breeding design module recommends donor parents that 782 

complement the sample’s unfavorable alleles, align with desired phenotypic traits, and 783 

exhibit the highest genetic similarity to the sample. These selected donor parents can 784 

accelerate the fixation of segregating loci in the offspring population, thus expediting 785 

the breeding process. 786 

In the breeding design module of the RiceAtlas platform, the recommendation of 787 

donor parents involves four steps: (1) Upload Genome Resequencing Data. Users 788 

upload the genome resequencing data for the target sample, which the system 789 

automatically standardizes. Using published quantitative trait genes (QTGs) and trait-790 

associated loci identified in this study, the system analyzes genotypes associated with 791 
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key agronomic traits and identifies QTNs that can be replaced with favorable alleles. 792 

(2) Select Target Traits for Improvement. Users select traits for improvement; these are 793 

categorized as core traits—supported by datasets for 53 phenotypes—or extended traits, 794 

which lack phenotypic data support. For core traits, users can specify initial phenotypic 795 

values as thresholds for donor-parent recommendations. (3) Calculate Improvable 796 

QTNs. On the basis of the selected target traits, the system integrates reported QTNs 797 

and newly identified loci to determine which QTNs in the sample can be improved, 798 

presenting such loci in a list format. (4) Recommend donor parents. Donor parents are 799 

recommended from three sources, totaling 9458 accessions: 6K-Rice accessions 800 

categorized by rice-growing regions, the 3K-Rice panel of 3010 Asian cultivated rice 801 

accessions, and the RiceNavi database resources, which include 404 diverse accessions. 802 

When the user specifies the donor resources, the system automatically recommends 803 

suitable donor parents based on the results of Step 3 and displays detailed information 804 

in a list format. The system also calculates genetic similarity between the recommended 805 

donor parents and the target sample using a whole-genome fingerprint map of 924 SNPs 806 

(Ma et al., 2023b). The built-in sorting function enables users to sort by genetic 807 

similarity and phenotypic value, facilitating the efficient selection of ideal donor 808 

parents.  809 
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Figure legends: 1038 

Figure 1. Geographic distribution and phenotypic variation of 6044 rice 1039 

accessions across five major rice-growing regions in China. 1040 

(A) Geographic distribution of 6044 rice accessions, with different colors representing 1041 

the six rice-growing regions: NE, NC, CC, SW, SC, and NW. Field sites used for 1042 

phenotypic evaluation are indicated by red symbols and included Gongzhuling (GZL) 1043 

for NE; Tanghai (TH) for NC; Hefei (HF), Wuhan (WH), and Hangzhou (HZ) for CC; 1044 

Kunming (KM) for SW; and Nanning (NN) for SC. Numbers represent the number of 1045 

accessions collected from each Province in China. No accessions were collected from 1046 

the NW growing region. 1047 

(B) Numbers of indica and japonica accessions collected from five growing regions. 1048 

The NE and NC regions grow only japonica rice, the SC region grows only indica rice, 1049 

and the SW and CC regions grow both indica and japonica varieties. 1050 

(C–F) Phenotypic distributions of (C) heading date, (D) grain per panicle, (E) 1000-1051 

grain weight, and (F) yield per plant for 3606 local accessions grouped by their 1052 

collection region and phenotyped at field site closest to their collection location. The 1053 

upper and lower boundaries of each box represent the 25th and 75th percentiles, the 1054 

horizontal line indicates the median, whiskers represent 1.5× the interquartile range, 1055 

and dots outside the whiskers are outliers. Different letters indicate significant 1056 

differences (P < 0.05, Least Significant Difference). Colors represent the seven 1057 

accession groups. Indica and japonica varieties from the CC and SW regions were 1058 

analyzed separately and are denoted as CC-I/SW-I and CC-J/SW-J. 1059 

 1060 

Figure 2. Genetic diversity and population differentiation among the rice 1061 

accessions analyzed in this study. 1062 

(A) Phylogenetic tree of 6044 O. sativa accessions and four wild rice accessions 1063 

constructed using whole-genome SNPs. The four wild rice accessions were used to root 1064 

the phylogenetic tree. 1065 
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(B) Uniform Manifold Approximation and Projection (UMAP) plots showing the first 1066 

two components for 5208 accessions from seven regional groups. 1067 

(C) Nucleotide diversity (π) and population divergence (FST) between different groups 1068 

of accessions. Values of π are displayed as a histogram, and values of FST are shown as 1069 

a heat map. 1070 

(D) Genome-wide average linkage disequilibrium decay for different groups of 1071 

accessions. 1072 

 1073 

Figure 3. Causative variants associated with heading date and other agronomic 1074 

trait QTGs across seven groups. 1075 

(A) Combinations of 47 alleles from 23 QTGs associated with heading date were 1076 

compared across seven accession groups; only the 28 alleles from 19 QTGs that showed 1077 

allelic variation among the groups are displayed. ref, homozygous reference allele; alt, 1078 

homozygous alternative allele; het, heterozygous; del, deletion. 1079 

(B) Heading dates of accessions carrying the top five allele combinations of heading 1080 

date QTGs for each of the seven accession groups recorded at the HF field site in 2023. 1081 

The x-axis labels (beginning with C) indicate the top five allele combinations for each 1082 

group of accessions, followed by percentages indicating the prevalence of each 1083 

combination in that group. 1084 

(C) Favorable allele frequencies for 233 alleles of 152 QTGs associated with key 1085 

agronomic traits were compared across the seven accession groups; only the 116 alleles 1086 

of 96 QTGs that showed allelic variation among the groups are displayed. favor, 1087 

favorable allele frequency; infer, inferior allele frequency. 1088 

 1089 

Figure 4. Patterns of artificial selection in seven groups of regional accessions. 1090 

(A) Analysis of genetic diversity and IBD along the 12 rice chromosomes in different 1091 

accession groups. The colored line graphs show genetic diversity (π), and the heatmaps 1092 

show IBD frequency, with a darker red color indicating regions of higher IBD frequency. 1093 

Dashed lines indicate the physical locations of 77 known functional QTGs, with 1094 
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different colors representing specific categories of agronomic traits. Overlap between 1095 

high-frequency IBD regions and regions of low genetic diversity suggests that these 1096 

regions have undergone strong selection during breeding programs in the different 1097 

accession groups. 1098 

(B) Analysis of genetic diversity and IBD along chromosome 12 for the different 1099 

accession groups. 1100 

(C) A pie chart illustrates the proportion of total IBD segments contributed by each 1101 

accession group, with the “Shared” segment indicating that 40.28% of the IBD 1102 

segments were shared among two or more groups. The upset plot provides a detailed 1103 

representation of the overlap in IBD segments among groups; each column represents 1104 

a set of IBD segments contained in one or more groups, as indicated by the connected 1105 

dots below. 1106 

(D) GO enrichment analysis of genes within IBD segments in the NE group. The 1107 

intensity of the circle color indicates the significance of enrichment (P-value, calculated 1108 

using a two-sided Fisher’s exact test), with darker colors indicating higher significance. 1109 

The size of the circle reflects the frequency of the GO term among the annotated genes. 1110 

The spatial arrangement of terms in the semantic space does not have a specific 1111 

meaning but is designed to visually separate the different GO terms for clarity. 1112 

(E) Haplotype display for GW5 and GW8 in different accession groups. The analyzed 1113 

intervals include the gene coding region and the 3-kb regions upstream and downstream 1114 

of the gene. 1115 

 1116 

Figure 5. Large-scale GWAS and identification of the novel gene OsGL3.6 1117 

through integration of GWAS results with selective sweep and IBD analyses. 1118 

(A) Phenotype data were collected for all 3606 accessions planted in 19 geographic 1119 

locations over one or two years. Numbers in parentheses indicate the number of years 1120 

and the number of traits evaluated at each location. 1121 

(B) Phenotypic variation in 53 phenotypic traits across 19 geographic locations. 1122 

Different letters in the heatmap indicate significant differences (P < 0.05) determined 1123 

Jo
urn

al 
Pre-

pro
of



42 

 

by two-way ANOVA followed by Duncan’s multiple comparison test. Heatmap colors 1124 

represent scaled phenotype values. Phenotypes 1 to 53 are described in Supplementary 1125 

Table 4. 1126 

(C) Combined Manhattan plot from separate GWAS analyses of the 212 datasets; the 1127 

phenotypes were classified into four categories (abiotic stress, biotic stress, yield 1128 

components, and heading date), each represented by a different color. The horizontal 1129 

dashed lines indicate the genome-wide significance thresholds for GWAS (10-6.2). 1130 

(D) Local Manhattan plot from the GWAS analysis for grain length on chromosome 3. 1131 

The red dashed line indicates the Bonferroni-corrected significance threshold (α = 1), 1132 

and the arrow highlights a significant SNP within the qGL3.6 region (chromosome 3: 1133 

35,155,927). 1134 

(E) The π-ratio (upper plot) and locations of high-frequency IBD windows (lower plot) 1135 

in the qGL3.6 region for different accession groups. The qGL3.6 locus is present in a 1136 

region that contains multiple π-ratio peaks and high-frequency IBD windows, 1137 

particularly in the SW-J and CC-J accessions, as highlighted by the dashed line. 1138 

(F) OsGL3.6 haplotypes spanning the 1.5-kb promoter region and the coding sequence 1139 

(excluding synonymous SNPs). Only SNPs supported by at least ten samples were 1140 

included in the analysis. 1141 

(G) OsGL3.6 haplotype frequency across different groups. 1142 

(H and I) Grain lengths of the three OsGL3.6 haplotypes in indica and japonica rice (H) 1143 

and in various rice accession groups (I). Letters above the boxes indicate significant 1144 

differences within subspecies (H) or among groups (I) (P < 0.05, Bonferroni correction). 1145 

(J) Functional validation of OsGL3.6 using CRISPR-Cas9 gene editing. Information on 1146 

the target sites and protospacer adjacent motif (PAM) sequences is shown at the top. 1147 

Mature grains from the osgl3.6 knockout mutants are shown below. Scale bar, 3 mm. 1148 

(K) Grain lengths of ZH11 and the osgl3.6 mutants (n = 10). Bars represent the mean 1149 

± SD, and P-values were calculated using a two-tailed Student’s t-test. 1150 

 1151 
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Figure 6. Development of the RiceAtlas rice breeding database and improvement 1152 

of the SG4 cultivar using the RiceAtlas breeding design tool. 1153 

(A) RiceAtlas integrates data from the 6044 accessions analyzed here with published 1154 

QTNs and data from 3414 additional rice genotypes, creating a comprehensive allele 1155 

and germplasm library. It provides five analytical functions: Germplasm, Phenotype, 1156 

GWAS, Variation, and Breeding. 1157 

(B) To improve grain length while preserving the desirable traits of SG4, we used the 1158 

RiceAtlas Breeding module to compare the SG4 genotype with accessions in the 1159 

germplasm library. ZKF8 was identified as the optimal donor parent, as it contained 1160 

long-grain alleles for two QTGs (GS3 and GW5) and exhibited high genetic similarity 1161 

to SG4. ZKF8 is also well-suited for cultivation in the same rice-growing region as SG4. 1162 

SG4 has the GG genotype at the causative site of the GS3 gene (Chr.3: 16,733,441) and 1163 

the AA genotype at the causative site of the GW5-1 gene (Chr.5: 5,365,256), both of 1164 

which are associated with a short-grain effect. By contrast, ZKF8 has the TT and GG 1165 

genotypes at these sites, which are associated with a long-grain effect. 1166 

(C) ZKF8 was crossed with SG4, and the progenies were backcrossed to SG4. The 1167 

BC1F1 generation was genotyped by resequencing, and individuals with heterozygous 1168 

genomic segments covering the two target genes were manually chosen as backcrossing 1169 

parents. Because of the high genetic similarity between ZKF8 and SG4, a BC1F3 1170 

individual with homologous donor alleles (red) only at the segment covering the two 1171 

QTGs was selected as the improved SG4 line. 1172 

(D) Grain lengths of SG4, ZKF8, and the improved SG4 line grown in Sanya. Error 1173 

bars represent standard deviations. P-values were calculated using a two-tailed 1174 

Student’s t-test. Scale bar, 5 mm. 1175 
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