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Leveraging Automated Machine Learning for Environmental
Data-Driven Genetic Analysis and Genomic Prediction in
Maize Hybrids

Kunhui He, Tingxi Yu, Shang Gao, Shoukun Chen, Liang Li, Xuecai Zhang,
Changling Huang, Yunbi Xu, Jiankang Wang, Boddupalli M. Prasanna, Sarah Hearne,
Xinhai Li, and Huihui Li*

Genotype, environment, and genotype-by-environment (G×E) interactions
play a critical role in shaping crop phenotypes. Here, a large-scale,
multi-environment hybrid maize dataset is used to construct and validate an
automated machine learning framework that integrates environmental and
genomic data for improved accuracy and efficiency in genetic analyses and
genomic predictions. Dimensionality-reduced environmental parameters
(RD_EPs) aligned with developmental stages are applied to establish linear
relationships between RD_EPs and traits to assess the influence of
environment on phenotype. Genome-wide association study identifies 539
phenotypic plasticity trait-associated markers (PP-TAMs), 223 environmental
stability TAMs (Main-TAMs), and 92 G×E-TAMs, revealing distinct genetic
bases for PP and G×E interactions. Training genomic prediction models with
both TAMs and RD_EPs increase prediction accuracy by 14.02% to 28.42%
over that of genome-wide marker approaches. These results demonstrate the
potential of utilizing environmental data for improving genetic analysis and
genomic selection, offering a scalable approach for developing
climate-adaptive maize varieties.

1. Introduction

The combination of genotype (G), environment (E), and their in-
teraction determines plant phenotype and adaptability.[1,2] The
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phenotypic plasticity (PP) of a genotype de-
scribes its differential performance across
environmental gradients,[3,4] and genotype-
environment interactions (G×E) therefore
reflect variation in PP across different
genotypes.[5–7] As the adverse impacts of cli-
mate change on crop yield intensify, breed-
ing climate-resilient crop varieties becomes
increasingly critical to ensuring global food
security.[8,9] To this end, defining the genetic
mechanisms of PP and G×E interactions is
an essential step in cultivating climate adap-
tive crop varieties.

In the past 10 years, although some stud-
ies have successfully identified some loci as-
sociated with PP and G×E,[10–16] these stud-
ies did not examine differences in the ge-
netic basis of PP and G×E, nor do these
reports clarify which environmental pa-
rameters (EPs) specifically affect such loci
that interact with the environment. The re-
cently developed Critical Environmental Re-
gressor through Informed Search-Joint Ge-
nomic Regression Analysis (CERIS-JGRA)

approach incorporates environmental data into statistical mod-
els to identify relationships between genetic and EPs,[17] and has
been applied to analyze the genetic basis of PP in crops such as
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rice, maize, wheat, sorghum, and oats, revealing key EPs that af-
fect PP.[18–22] However, this approach cannot detect PP-related ge-
netic loci relevant to specific developmental stages, which is also
essential for a robust landscape perspective of the genetic basis
of PP.

Alternatively, breeding can be accelerated through genomic
selection,[23] which largely shifts the decision-making from
human judgment to biological data-driven statistical models,
streamlining the breeding process and improving efficiency.[24,25]

Some studies have tested complex trait genetic loci for model
training instead of whole-genome genetic markers, which proved
effective for enhancing model performance and enabled the ap-
plication of complex trait genetic loci in breeding.[26–28] By con-
trast, environment-responsive genetic loci have yet to be ex-
plored for enhancing model performance. In addition, some
studies have begun integrating environmental data into pre-
dictive models,[29–32] as EPs affecting phenotype could po-
tentially improve prediction accuracy and enable joint multi-
environment phenotype predictions about crop adaptability to
new or changing environments. We therefore speculate that ap-
plying environment-responsive genetic loci and EPs in genomic
prediction may enhance performance in modeling traits across
environments.

Historically, most models have used reaction norm models to
account for changes in genotype performance across trials as
a function of measurable characteristics of those trials, called
environmental covariates (ECs).[21,33,34] As potential ECs have
high dimensionality, statistical models employing ECs must op-
erate robustly in high-dimensional spaces, posing a significant
challenge to the model’s intrinsic capabilities. Machine learn-
ing (ML) has opened new opportunities for genomic selection-
based breeding,[35,36] which provides several advantages, includ-
ing computational efficiency, high data handling capacity, and
the ability to integrate multidimensional data.[35,37,38] ML can also
capture complex nonlinear relationships between features to en-
hance predictive performance of models.[39,40] Therefore, we hy-
pothesized that ML could help overcome challenges in incorpo-
rating environmental data and multi-environment joint predic-
tion into genomic prediction tasks.

To explore this possibility in the current study, we applied an
automated machine learning (AutoML) framework incorporating
environmental data in genetic analysis and genomic predictions
of a public dataset comprising 1000 maize hybrids across seven
experimental environments, with supplementary validation in
additional datasets from 2808 maize hybrids and 286 wheat lines.
We reduced the dimension of EPs based on the developmental
stages of maize hybrids, then screened for genetic loci involved
in PP and G×E using genome-wide association study (GWAS),
and compared differences in these loci between PP and G×E. We
found that integrating GWAS loci and dimensionality-reduced
environmental parameters (RD_EPs) into genomic prediction
models resulted in higher prediction accuracy than other statis-
tical models in different prediction tasks, and showed good scal-
ability in independent test datasets. Collectively, our study serves
as a reference pipeline for genetic loci involved in PP and G×E
interactions that guide the incorporation of environmental data
into genomic selection.

2. Results

2.1. Phenotypic Plasticity and Genotype-Environment
Interactions Influencing Agronomic and Yield Traits in Maize
Hybrids

We obtained the publicly available Genomes to Fields (G2F)
dataset,[41,42] which included 1539 maize hybrids cultivated
across 21 locations in the eastern and midwest United States
(Figure 1a), and spanning three growing seasons (2020, 2021,
and 2022), resulting in 36 total environments (i.e., year-location
combinations). The traits of interest included plant height
(PH), flowering time (FT), grain test weight (GTW), and grain
yield (GY). The 1539 hybrids were divided into four geno-
type datasets: Maize1000, Maize180, Maize331, and Maize359.
The relationships between the genotypes and environments in
these four datasets are illustrated in Figure 1b,c. Figure 1b
shows overlap in the distribution of maize hybrids among
the four genotype classes; Figure 1b shows overlap in cultiva-
tion environments among the four genotype classes. Although
Maize331 is a subset of the Maize1000 genotype dataset, the
other genotypes shared no overlap among datasets. Maize180
and Maize1000 phenotyping was conducted in the same envi-
ronments, Maize331 and Maize1000 were phenotyped in some
overlapping environments, while Maize359 was phenotyped in
independent environments. Details of experimental environ-
ments for each dataset are provided in Table S1 (Supporting
Information).

In the Maize1000 dataset, within population comparisons
showed significant phenotypic variation for each trait, with vari-
ation levels differing among environments and displaying obvi-
ous G×E effects. PP patterns also showed marked differences in
variability among traits. For example, PP could be observed in FT
across environments, but all individuals followed a similar trend,
suggesting a weak influence of G×E interactions. In contrast, PP
followed complex patterns for PH, GTW, and GY between envi-
ronments, with frequent G×E interactions (Figure 1d). To quan-
tify the effect of these interactions with environment, we analyzed
the contribution of G, E, and G×E interactions (including resid-
ual variance) to each phenotype.

This analysis revealed that G, E, and G×E exerted differing in-
fluences on each of the four traits (Figure 1d), with the most pro-
found effects observed in the influence of E on FT (i.e., account-
ing for 88.0% of the phenotypic variance) and G×E contributing
59.3% of variance in GY. By contrast, G accounted for 30.9% and
30.2%, E for 43.2% and 43.9%, and G×E for 25.9% and 26.0%
of the phenotypic variance in PH and GTW, respectively. These
results indicated that E primarily influences FT, while G, E, and
G×E can each individually impact PH and GTW, and GY is most
strongly affected by G×E. The heritability of PH was 0.878, 0.889
for FT, 0.890 for GTW, and 0.689 for GY (Figure 1d), indicating
these phenotypes were largely reproducible across environments.
These results collectively demonstrated the strong influence of
E and G×E on the phenotype of maize hybrids, underscoring
the importance of considering environmental data in genomic
predictions and investigations of the genetic basis of maize
traits.
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Figure 1. Overview of multi-environment trials for maize hybrids. a) Geographical distribution of 36 experimental environments (year-location combina-
tions) in the United States, which were distributed in 21 locations. b) The overlap in the distribution of maize hybrids among the Maize1000, Maize180,
Maize331 and Maize359 datasets. c) The overlap in cultivation environments among the Maize1000, Maize180, Maize331 and Maize359 datasets. d)
Phenotypic variability of each hybrid in the Maize1000 dataset for plant height (PH), flowering time (FT), grain test weight (GTW), and grain yield (GY)
responding to environments. The black lines connect the mean phenotypes across different environments, with circle and numerical values representing
the mean phenotypes. The pie charts show the proportion of different variance components contributing to the total phenotypic variance.
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Figure 2. Design of automated machine learning framework for genetic analysis and genomic prediction in maize hybrids. a) Workflow of automated
machine learning in genomic prediction. b) Detailed process of data and feature processing in automated machine learning (AutoML) framework.
GWAS: genome-wide association study; TAMs: trait-associated markers. c) Base model training procedure in AutoML framework.

2.2. An Automated Machine Learning Framework for
Genome-Wide Association Study and Genomic Prediction of
Maize Hybrid Phenotypes

To facilitate incorporating environmental data into genetic analy-
sis and genomic prediction, we designed an AutoML framework
integrating data processing, environmental feature handling,
GWAS, model training, and phenotypic prediction functions
(Figure 2a). The data processing and feature handling functions
included genotype quality control, dimensionality reduction
of EPs, and calculation of PP parameters (Figure 2b). The
three-variance-component mixed model (3VmrMLM) method[43]

was used for GWAS to identify trait-associated markers (TAMs)
associated with specific traits, then apply those TAMs as genetic
features along with RD_EPs as environmental features in model
training. The model training function integrates a variety of
base machine learning models, with the Optuna automated
hyperparameter tuning algorithm[44] to optimize the model
parameters, a stacking algorithm[45] for model ensembling to
improve predictive accuracy, and SHapley Additive exPlanations
(SHAP)[46] to enhance model interpretability (Figure 2c). A
phenotype prediction function facilitates validation with inde-
pendent test data, including predictions for untested genotypes
in a tested environment, tested genotypes in untested envi-
ronments, and untested genotypes in untested environments.

Pearson correlation coefficient (PCC) was used to evaluate the
predictive accuracy of the final model.

2.3. Environmental Parameters Associated with Maize
Developmental Stages and Phenotypic Plasticity for
Genome-Wide Association Study

Growth and development are strongly influenced by EPs in
maize, and in particular, accumulated temperature (i.e., grow-
ing degree days, GDD) is highly correlated with development
stage, with specific stages initiating after GDD reaches a favor-
able range (Table S1, Supporting Information). To reduce the di-
mensionality of EPs, development stage-environment windows
was established based on the relationship between the 36 devel-
opment stages in maize hybrids (from sowing to maturity: V0-R6)
and GDD[47] (Figure 3a). We then determined the average EPs
for day length (DL), GDD, precipitation (PRE), photosynthetically
active radiation (PAR), air relative humidity (RH), photothermal
time (PTT), photothermal ratio (PTR), daily diurnal temperature
range (DTR), and photothermal sensitivity (PTS) corresponding
to each window (Table S2, Supporting Information), resulting in
a unique EP profile for each window (Figure 3b; Figure S2, Sup-
porting Information). Plots of these parameters for each com-
plete growing season showed considerable fluctuation, reflecting
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Figure 3. Dimensionality reduction of environmental parameters according to the development period of maize hybrids. a) The 36 development stage-
environment windows (V0 to R6) for maize hybrids were defined based on the relationship between the developmental stages and growing degree days
(GDD). b) Trends in GDD, day length (DL), photosynthetically active radiation (PAR), and precipitation (PRE) across 36 development stage-environment
windows.

the complexity of environmental changes (Figure 3b; Figure S2,
Supporting Information), which may be pivotal in determining
the effects of PP and G×E interactions on traits.

To establish a relationship between EP and traits, we first cal-
culated the phenotypic mean of four traits across each environ-

ment. Then, by setting different sliding window sizes, computed
all possible values of the nine EPs within any development stage-
environment window in the range of V0 to R6. Pearson correla-
tion analysis between the mean values for each trait and the nine
EPs in each developmental window showed that PH was most
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strongly correlated with PTS in V3 to V6 development stage (r
= 0.964); FT was most strongly correlated with PTT in V3 to V5
development stage; GTW was most strongly correlated with PTS
in V14 to V16 (r = −0.953) and PRE in V19 to V20 (r = 0.953);
GY was most strongly correlated with PTR in V2 to V15 (r =
−0.986) (Figure 4a; Figures S3a and S4, Supporting Information).
These windows in which EPs were most strongly correlated with
traits (r ≥ 0.90 or r ≤ −0.90) were subsequently designated critical
development stage-environment windows (referred to as critical
windows hereafter). In these critical windows, we could observe
clear linear effects of EPs on various traits during specific growth
stages. For instance, FT was predominantly influenced by EPs
in the early vegetative growth stage (DTR, V8; PAR, V2–V5; PTR,
V2–V5; GDD, V3–V5; PTS, V8; PTT, V3–V5), whereas GY was af-
fected by EPs in both the early and late vegetative growth stages
(DTR, V0–V6; PTR, V2–V15; PRE, V7–V14; GDD, V3–V17; PTT,
V3–V18). These findings underscored the significance of vege-
tative growth phase in determining the phenotype and yield of
maize hybrids.

Regression analysis of the critical windows revealed a strong
linear correlation between trait mean values and the nine EPs
(critical windows) across environments (Figures S3b and S5, Sup-
porting Information). A steeper slope in these regression analy-
ses indicates greater phenotypic variability (i.e., higher PP, less
environmental adaptability) and vice versa. We therefore assessed
this linear relationship between each individual trait value and
each EP for each critical window (Figure 4b). The resulting PP
scores (intercept and slope) for each trait showed significant cor-
relations between PH and 2 EPs, FT and 8 EPs, GTW and 5 EPs,
and GY and 5 EPs (Figure 4b; Figure S3a, Supporting Informa-
tion), which were subsequently used as PP parameters in GWAS.

2.4. Genome-Wide Association Study Based on Phenotypic
Plasticity and Genotype-Environment Interaction

To dissect the genetic basis of PP and G×E, we first examined the
distribution of trait values and PP parameters. We found that trait
values in different environments followed a normal distribution,
and slope was strongly correlated with intercept in fitting equa-
tions between EPs and traits, both of which followed a normal
distribution (Figure S6 and Tables S3 and S4, Supporting Infor-
mation), suggesting these traits and PP parameters were suitable
for GWAS. We then analyzed single-environment GWAS of PP
parameters and joint GWAS across multiple environments for
trait values to explore TAMs that influence PP and G×E interac-
tions.

GWAS subsequently identified 854 total TAMs, including 539
PP-TAMs (230 for slope and 309 for intercept), 223 environ-
mental stability TAMs (Main-TAMs), and 92 G×E-TAMs. Since
each trait corresponds to multiple PP parameters, GWAS de-
tected many identical PP-TAMs. After merging these identical
PP-TAMs, we found that 39 PP-TAMs, 67 Main-TAMs, and 24
G×E-TAMs were associated with PH; 95, 47, and 16 with FT;
92, 67, and 28 GTW; and 57, 42, and 24 with GY, respectively
(Figure 4c; Figure S7 and Table S5, Supporting Information). Al-
though a multitude of common TAMs were identified across dif-
ferent PP parameters for each trait, a substantial number of PP
parameter-specific TAMs were still detected. For example, in PH,

43.10% of the TAMs detected using PP parameters derived from
PTS and PAR were found to be nonoverlapping. These results
highlighted the informative value of PP parameters derived from
different EPs in genetic analysis, which can facilitate exploration
of the genetic basis of phenotypic plasticity of target traits.

To validate the reliability of these TAMs, we selected TAMs for
four traits based on their effect sizes, including three large-effect,
three moderate-effect, and three small-effect TAMs from each
category (Main-TAMs, G×E-TAMs, Slope-TAMs, and Intercept-
TAMs). Comparison of phenotypic variations among different
genotypes (AA, Aa, and aa) across multiple environments identi-
fied significant phenotypic differences (P < 0.05) between the AA
and aa allele combinations of all selected TAMs in at least two en-
vironmental conditions (Table S6, Supporting Information), thus
confirming the reliability of these TAMs. We then searched for
reported functional genes related to each target trait in the 1Mb
chromosomal regions upstream and downstream of TAM (When
r2 = 0.2, the whole genome linkage disequilibrium (LD) decays
to approximately 2Mb; Figure S11, Supporting Information).
Approximately 42.5% of the TAMs were associated with genes of
known function in maize or with orthologous genes of known
function from other species in maize (Figure 4c; Figure S7 and
Table S5, Supporting Information). Among them, 64, 61, 69, and
65 known functional genes or orthologous genes were respec-
tively identified for PH, FT, GTW, and GY, including classic star
genes such as d1 (Zm00001d039634), d9 (Zm00001d013465),
zfl1 (Zm00001d026231), knr6 (Zm00001d03662), and o11
(Zm00001d03677).

To compare the genetic basis of PP with that of G×E, we
first defined the 1Mb chromosomal regions upstream and down-
stream of the TAMs as quantitative trait loci (QTLs) and merged
overlapping QTLs into a single QTL to mitigate the impact of
positional bias in TAMs caused by LD in subsequent analyses.
Through this step, we obtained 20 G×E-QTLs and 35 PP-QTLs
for PH, 15 and 83 for FT, 22 and 76 for GTW, and 21 and 48 for
GY, respectively. We then examined the co-localization of G×E-
QTLs and PP-QTLs for each trait and found that in PH, five QTLs
were co-localized between PP and G×E, accounting for 14.3% of
the total PP-QTLs and 25.0% of the total G×E-QTLs, respectively;
in FT, four such co-localized QTLs were identified, accounting
for 4.8% of the total PP-QTLs and 26.7% of the total G×E-QTLs,
respectively; in GTW, 13 co-localized QTLs were identified, ac-
counting for 17.1% of the total PP-QTLs and 59.1% of the total
G×E-QTLs, respectively; and in GY, six co-localized QTLs were
detected, accounting for 12.5% of the total PP-QTLs and 28.6%
of the total G×E-QTLs, respectively (Table S7, Supporting Infor-
mation). These results suggested that the genetic loci underlying
PP shared relatively little overlap with those loci mediating the
effects of G×E interaction.

2.5. Using Trait-Associated Markers and Dimensionality-Reduced
Environmental Parameters as Features to Enhance Accuracy of
Genomic Prediction

To explore the value of TAMs and EPs in genomic predic-
tion for breeding, we constructed an ensemble genomic pre-
diction model including Categorical Boosting (CatBoost), Ex-
treme Gradient Boosting (XGBoost), Light Gradient Boosting
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Figure 4. Phenotypic plasticity parameters estimation and genome-wide association study. a) Flowchart for determining the critical development stage-
environment windows for each trait and dimensionality-reduced environmental parameters (RD_EPs). DTR: daily diurnal temperature range; PAR: pho-
tosynthetically active radiation; PTR: photothermal rate; DL: day length; RH: air relative humidity; PRE: precipitation; GDD: growing degree days; PTS:
photothermal sensitivity; PTT: photothermal time. b) Phenotypic plasticity (PP) parameters modeled by RD_EPs for PH, FT, GTW, and GY. Each dot de-
notes the observed phenotypic value for each genotype in an environment, and each line is the regression-fitted value for each genotype. c) Manhattan
plot of genome-wide association study (GWAS) for PP. The slope and intercept represent PP trait-associated markers (PP-TAMs). The different colors of
the dots in the plot represent different traits. PH: plant height; FT: flowering time; GTW: grain test weight; GY: grain yield.

Adv. Sci. 2025, 2412423 2412423 (7 of 17) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202412423 by Institute of C

rop Sciences, C
A

, W
iley O

nline L
ibrary on [06/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Machine (LightGBM), and BayesianRidge within the AutoML
framework. We then utilized fivefold cross-validation to partition
the Maize1000 dataset into training and validation sets and eval-
uated the model’s predictive accuracy for the four traits using the
PCC between observed and predicted values.

To determine whether and how each of these base models
contributed to prediction accuracy, we initially conducted abla-
tion experiments to quantify their respective impacts on pre-
dictive performance of the ensemble model. Using All-TAMs
and DR_EPs as features, we compared the performance of sin-
gle models, two-model ensembles, three-model ensembles, and
the full four-model ensemble. The results demonstrated that
the ensemble model, including all four algorithms, consistently
achieved the highest predictive accuracy across all traits (Figure
S8, Supporting Information). For example, the four-model en-
semble achieved a predictive accuracy of 0.878 for PH, compared
to 0.875 for the three-model ensemble, 0.872 for the two-model
ensemble, and 0.853 for the single model (Figure S8a, Support-
ing Information). Similarly, the four-model ensemble achieved a
predictive accuracy of 0.619 for GY, while the three-model, two-
model, and single-model ensemble achieved predictive accuracy
of 0.604, 0.602, and 0.590, respectively (Figure S8d, Supporting
Information). These findings underscore the role of individual
base models in enhancing the predictive accuracy of the ensem-
ble model.

Next, we explored the impact of various genetic and environ-
mental features on model performance. The genetic features em-
ployed for model training included all single nucleotide poly-
morphisms (All-SNPs), randomly selected SNPs (Random1 and
Random2), All-TAMs (including Main-TAMs and environment-
responsive TAMs), Main-TAMs, and environment-responsive
TAMs (E-TAMs, including G×E-TAMs and PP-TAMs). The en-
vironmental features used in model training include both the
raw EPs (Raw_EPs) and DR_EPs. Comparison of model perfor-
mance for all traits using different combinations of these fea-
tures revealed that, for all traits and ignoring EPs, using All-
TAMs specific to each trait as features resulted in better pre-
dictive accuracy than using All-SNPs, Random1, Random2, or
only the Main-TAMs and E-TAMs (Figure 5a). Compared to us-
ing All-SNPs, employing All-TAMs resulted in average increases
of 2.68%, 3.38%, 1.56%, and 4.44% in predictive accuracy for
PH, FT, GTW, and GY, respectively. In comparison to using only
Main-TAMs, adding E-TAMs led to average increases of 4.27%,
7.92%, 3.42%, and 8.01% in predictive accuracy for PH, FT, GTW,
and GY, respectively. These results indicated that thoroughly con-
sidering trait-specific genetic features (All-TAMs) in predictive
models could enhance the predictive accuracy of the model, with
environment-responsive genetic features (E-TAMs) contributing
to the pronounced improvement to predictive accuracy.

Alternatively, neglecting genetic feature categories and us-
ing both genetic feature and Raw_EPs as features for model
training significantly improved predictive accuracy of each trait
compared with no EPs (No_EPs). Furthermore, the inclusion of
DR_EPs instead of Raw_EPs further enhanced in predictive ac-
curacy (Figure 5a). Overall, using both All-TAMs and DR_EPs
as features resulted in the highest predictive accuracy of the
model (Figure 5a). Compared with All-SNPs, using both All-
TAMs and DR_EPs increased the predictive accuracy from 0.736
to 0.878 for PH (a 19.29% increase, percent change = (0.878–

0.736)/0.736×100%), from 0.776 to 0.975 for FT (a 23.32% in-
crease, percent change= (0.975–0.776)/0.776×100%), from 0.756
to 0.862 for GTW (a 14.02% improvement, percent change =
(0.862–0.756)/0.756×100%), and from 0.482 to 0.619 for GY (a
28.42% increase, percent change = (0.619–0.482)/0.482×100%).
Taken together, these results indicated that the use of All-TAMs
and RD_EPs as features could enhance the accuracy of predic-
tive models, emphasizing the informative value of environmental
data in genomic predictions and importance of feature process-
ing in genetic and environmental data.

We then conducted SHAP analysis to evaluate the importance
of features in models trained with All-TAMs and RD_EPs. We se-
lected the ten features that accounted for the greatest percent of
phenotypic variation among traits for subsequent analysis. The
results showed that the top 10 features contributing to FT phe-
notypic variation were all EPs. For GTW, seven of the top 10 fea-
tures were EPs, while six of the top 10 were EPs for PH. The
top 10 features responsible for variation in GY were evenly split
between genetic and EPs (Figure 5b). Correspondingly, variance
analysis indicated that E provided a strikingly higher contribu-
tion to variation in FT phenotype than G (88.0% vs 7.4%). E
also accounted for a larger proportion of the phenotypic varia-
tion in GTW and PH than G, though to a less pronounced extent
(≈43.0% vs 30.0%). By contrast, the contributions of E and G to
phenotypic variation in GY were roughly equivalent (22.0% vs
18.7%, respectively). Notably, GY was more susceptible to multi-
ple EPs (PAR, RH, PRE, GDD, and PTR) than other traits, which
could explain its relatively low heritability. These SHAP findings
aligned well with our analysis of trait variance and further un-
covered the prominent influence of EPs in determining pheno-
type for some environment-responsive maize traits, underscor-
ing their potential for application in genomic selection breeding
programs.

Among genetic features, the top four features contribut-
ing to PH were all Main-TAMs; two of the top three features
(S2_18656506 and S5_209487005) contributing to GW were
Main-TAMs; and three of the top five features (S3_184263156,
S6_167214564, and S8_9279105) contributing to GY were its
Main-TAMs (Figure 5b). These results thus indicated that Main-
TAMs appear to contribute more to regulating traits than E-
TAMs.

In addition, comparison of absolute SHAP value rankings be-
tween the identified TAMs (including Main-TAMs, G×E-TAMs,
and PP-TAMs) and 2000 randomly selected SNPs from across
the genome indicated that all TAM categories had significantly
higher mean absolute SHAP scores than those of randomly
selected SNPs (P < 0.05; Figure S9, Supporting Information).
These findings were consistent with our GWAS results and pro-
vided further evidence that TAMs identified through our frame-
work substantially contribute to both improving model perfor-
mance and explaining phenotypic variation.

2.6. Genomic Selection Model Based on Automated Machine
Learning Demonstrates Higher Predictive Accuracy than Other
Current Models Across Diverse Prediction Tasks

To compare our model with other current models in cross-
environment and cross-genotype prediction tasks, we carried
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Figure 5. Train and interpret of genomic prediction models with automated machine learning framework. a) The impact of different combinations
of genetic and environmental features on model prediction accuracy. No_EPs represent no EPs were used, Raw_EPs represent raw environmental
parameters, and RD_EPs represent dimensionality-reduced environmental parameters. All-SNPs: Genome wide quantitative trait nucleotides without
feature extraction. Main-TAMs: environmental stability trait-associated markers. E-TAMs: Genotype-environment interactions trait-associated markers
plus phenotypic plasticity trait-associated markers. All-TAMs: Main-TAMs plus E-TAMs. Random1: Based on the number of all TAMs detected by GWAS,
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out phenotypic predictions for three distinct scenarios: Scenario
1) Phenotype prediction of untested genotypes in tested en-
vironments; Scenario 2) Phenotype prediction of tested geno-
types in untested environments; and Scenario 3) Phenotype pre-
diction of untested genotypes in untested environments. For
these analyses, we tested 23 models, including genomic se-
lection model based on automated machine learning (Auto-
GS); joint genomic regression analysis using reaction-norm pa-
rameters (JGRA.Norm) or genome-wide marker effect continua
(JGRA.Marker); main additive-effect model based on reproduc-
ing kernel hilbert space, genomic best linear unbiased prediction
(GBLUP), gaussian kernel and deep kernel (EA-RKHS, EA-GB,
EA-GK and EA-DK), main additive plus dominance effects model
based on RKHS, GB, GK and DK (EAD-RKHS, EAD-GB, EAD-
GK and EAD-DK), main-effect EAD plus G×E deviation model
based on RKHS, GB, GK and DK (EAD+GE-RKHS, EAD+GE-
GB, EAD+GE-GK and EAD+GE-DK), main-effect EAD with
main envirotype information model based on RKHS, GB, GK,
and DK (EADW-RKHS, EADW-GB, EADW-GK and EADW-DK),
and main-effect EADW plus reaction norm for GE model based
on RKHS, GB, GK, and DK (EADW+GW-RKHS, EADW+GW-
GB, EADW+GW-GK, and EADW+GW-DK). The findings re-
vealed that our Auto-GS model consistently achieved the high-
est predictive accuracy across all traits, irrespective of predictive
scenario (Figure 6).

In prediction Scenario 1, Auto-GS model demonstrated the
highest average accuracy in FT predictions across environments
(PCC = 0.751), followed by GTW (PCC = 0.749), PH (PCC =
0.730), and GY (PCC = 0.449). The accuracy of FT prediction
was 2.88% higher than that of the second-ranked model EA-
RKHS. The GTW prediction accuracy was 2.60% higher than
that of the second-ranked model, EADW+GW-GK. Addition-
ally, the PH prediction accuracy was 3.40% higher than the
second-ranked model, EADW+GW-DK. The GY prediction accu-
racy by Auto-GS model also surpassed the second-ranked model,
EADW+GW-GB, by 2.05%. These results indicated that Auto-
GS model showed strong performance in cross-genotype predic-
tions (Figure 6). In prediction Scenario 2, Auto-GS model again
showed the highest average accuracy in GTW predictions (PCC =
0.748), followed by FT (PCC = 0.739), PH (PCC = 0.717), and GY
(PCC = 0.436). Its predictive accuracy in GTW was 2.47% higher
than that of the second-ranked model EAD-RKHS. The FT pre-
diction accuracy was 0.14% higher than that of the second-ranked
model, EA-RKHS. Additionally, the PH prediction accuracy was
1.41% higher than the second-ranked model, EADW+GW-DK.
Auto-GS model also showed higher accuracy in predicting GY
than the next best model, EADW+GW-GK, by 2.11%. These
results demonstrated Auto-GS model’s robust performance in
cross-environment predictions (Figure 6). In prediction Scenario
3, Auto-GS model again showed the highest average predictive ac-
curacy for GTW (PCC= 0.733), followed by FT (PCC= 0.732), PH

(PCC = 0.695), and GY (PCC = 0.412). The accuracy of GTW pre-
diction was 0.55% higher than that of the second-ranked model,
EADW-GB. The FT prediction accuracy was 0.55% higher than
that of the second-ranked model, EAD+GE-DK. Additionally, PH
prediction accuracy was 1.76% higher than the second-ranked
model, EAD+GE-DK, and predictions of GY had 0.73% higher
accuracy than the next most accurate model, EADW+GW-GB.
These results indicated that Auto-GS model displayed consistent
performance in cross-genotype and cross-environment predic-
tion tasks (Figure 6). These results indicated that Auto-GS model
could handle a variety of complex predictive tasks with higher ac-
curacy than any other current models, highlighting its immense
potential in crop genomic prediction breeding.

We subsequently compared the computational efficiency of
our Auto-GS model with that of 22 alternative models across
three prediction scenarios. This analysis revealed that compu-
tational time consistently increases with expanding dataset size
across all models (e.g., FT contains data from 5 environments,
6 environments for PH, and 7 environments each for GY and
GTW). Models based on RKHS, GB, GK, and DK frameworks
required significantly longer computation time compared to
JGRA.norm, JGRA.Marker, and Auto-GS (Figure S10, Support-
ing Information). Among them, JGRA.norm achieved the short-
est computation time across all traits and prediction scenarios,
followed by JGRA.Marker, and Auto-GS ranking third in com-
putational efficiency. Notably, the EAD+GE-RKHS model exhib-
ited the longest computation duration in Scenario 1 and 3, the
EADW+GW-GB model exhibited the longest computation du-
ration in Scenario 2. For instance, JGRA.norm completed pre-
diction Scenario 1 for FT traits in 89 s, while JGRA.Marker re-
quired 146 s, and Auto-GS took 440 s. In contrast, EAD+GE-
RKHS required 129348 s for this scenario. Similarly, the com-
putation times recorded for prediction Scenario 1 for GY were
89 s (JGRA.norm), 178 s (JGRA.Marker), 656 s (Auto-GS), and
168147 s (EAD+GE-RKHS). These results indicate that Auto-GS
provides substantially enhanced computational efficiency in ge-
nomic prediction scenarios compared to conventional genomic
prediction approaches.

2.7. Genomic Selection Model Based on Automated Machine
Learning Exhibits Good Scalability in Predicting Phenotypes
Across New Datasets

To test the scalability of Auto-GS model in predicting pheno-
types across new datasets, we used Maize180, Maize331, and
Maize359 as independent test sets to carry out cross-genotype
and cross-environment prediction, in which Maize180 repre-
sented untested genotypes in tested environments; Maize331
represented tested genotypes in untested environments; and
Maize359 represented untested genotypes in untested environ-

randomly select SNPs from the genome, and then extract the loci within 37 kb upstream and downstream of the random SNPs as genetic features.
Random2: Based on the number of All-TAMs and all SNPs within the 37 kb interval upstream and downstream of the TAMs, randomly select the same
number of SNPs from the genome as genetic features. b) Model interpretations. Shapley Additive Explanation (SHAP) values show the influence of
each feature on the final phenotype prediction for each hybrid. A negative SHAP value suggests that a specific feature factor had a negative effect on the
prediction, whereas a positive SHAP value indicates a positive effect on the prediction. PH: plant height; FT: flowering time; GTW: grain test weight; GY:
grain yield.
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Figure 6. Comparative analysis of prediction accuracy between genomic selection model based on automated machine learning and other statistical
models across diverse predictive scenario. Scenario 1: Phenotype prediction of untested genotypes in tested environments. Scenario 2: Phenotype
prediction of tested genotypes in untested environments. Scenario 3: Phenotype prediction of untested genotypes in untested environments. Auto-
GS: Genomic selection model based on automated machine learning. JGRA.Norm: Joint genomic regression analysis using reaction-norm parameters.
JGRA.Marker: Joint genomic regression analysis using genome-wide marker effect continua. EA-GB, EA-GK and EA-DK: main additive-effect model based
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ments (see Tables S2 and S8–S10, Supporting Information, for a
detailed list of their respective EPs and trait values).

Clustering analysis showed that all 36 environments could be
grouped into four clusters. Maize1000 and Maize180 environ-
ments were distributed across the four clusters, while Maize331
environments were primarily distributed in Clusters 3 and 4,
and the Maize359 environments were mainly distributed in Clus-
ters 1, 2, and 4 (Figure 7a). At the same time, Neighbor-joining
(NJ) tree revealed that all genotypes could be classified into
four groups. Maize1000 and Maize180 included individuals from
Pop1, Pop2, and Pop3, while Maize331, as a subset of Maize1000,
was distributed within Pop1. By contrast, Maize359 was dis-
tributed in Pop4 and showed a relatively distant genetic relation-
ship with Maize1000, Maize180, and Maize331 (Figure 7b). These
analyses revealed similarity in the relationships among environ-
ments and among genetics across different test sets.

We then trained an optimized model integrating All-TAMs
and DR_EPs of Maize1000 for independent prediction. In the
Maize180 test set, the PCC values for PH ranged from 0.410 to
0.705 across environments, from 0.451 to 0.625 for FT predic-
tions, and from 0.422 to 0.627 in GTW predictions. However,
predictions of GY had lower PCC values and showed markedly
greater variation across various environments, ranging from
0.087 to 0.444 (Figure 7c). Similarly, in the Maize331 test set,
the PCC values reached 0.555–0.716, 0.402–0.750, 0.309–0.673,
and 0.110–0.438, for PH, FT, GTW, and GY across different en-
vironments, respectively (Figure 7d). As expected, the Maize359
dataset resulted in poorer prediction outcomes in which none
of the PCC values exceeded 0.400 for any trait across all envi-
ronments, and the PCC values for GTW and GY did not exceed
0.300 (Figure 7e). It is likely that the distant genetic relation-
ship between Maize359 and the training population, Maize1000,
was primarily responsible for this outcome. In addition, we fur-
ther validated the generalizability of our model using the previ-
ously published large scale Maize2808 hybrid dataset, including
the Maize366 and Maize5844 datasets, and a Wheat286 dataset
(see detailed analyses in Supporting Results File, Tables S11–S18
and Figures S12–S14, Supporting Information). This analysis
demonstrated that applying environmental data to incorporate
PP and G×E interactions in genomic selection and genetic anal-
ysis with our Auto-GS model could further improve phenotypic
predictions in large-scale hybrid screening. In summary, these
findings underscore that Auto-GS model shows good scalability
in predicting phenotypes across new datasets, but its effective-
ness requires considerable environmental and genetic similarity
between the training set and independent test sets.

3. Discussion

Environment plays a pivotal role in influencing phenotypic vari-
ation. Our variance analysis in a multi-environment trial data

from 1000 maize hybrids revealed that environment and G×E
interactions have significantly greater influence on variation in
PH, FT, GTW, and GY than that of genotype. In particular,
phenotypic variance in FT is predominantly driven by environ-
mental influences, whereas variance in GY is largely governed
by G×E interactions (Figure 1d). These results align well with
prior research,[16,18] suggesting that this phenomenon is univer-
sal across diverse maize hybrid populations. These findings, to-
gether with previous studies, collectively underscore the promi-
nent role of environment in shaping maize phenotype, thus em-
phasizing the informative value of environmental data in genetic
analysis and breeding of maize.

To integrate environmental data into genetic analysis of loci
controlling PP, Li et al. (2018) proposed a method that establishes
a reaction norm between EPs and phenotypes to characterize the
impact of a given EP on PP within a certain time window,[17]

where plants in different environments are at different develop-
mental stages. Despite its wide application, this method shows
limited ability to explain the influence of EPs on PP in specific
stages of plant development.[18–22] To address this challenge, our
strategy in the current study establishes a reaction norm between
EPs and phenotypes by first reducing the dimensionality of EPs
in different environments to 36 developmental stages of maize
(i.e., V0-R6, Figure 3; Figure S1, Supporting Information), then
establishes a reaction norm between EPs and phenotype based
on these RD_EPs. The resulting reaction norm can therefore re-
flect the impact of EPs on PP during a given developmental stage,
as all plants are at the same developmental stage across differ-
ent environmental conditions (Figure 4b). This capacity to pre-
dict the contribution of PP-related loci to variation in a given
trait at a specific developmental stage can thus provide a valu-
able supplement to the strategy developed by Li and colleagues
(2018).[17]

In previous studies, single EPs most strongly correlated with
traits have been typically used to calculate PP parameters for
GWAS or QTL mapping.[18–22] However, results in this current
study indicate that employing PP parameters derived from mul-
tiple EPs in GWAS can uncover a greater number of PP-TAMs
than any single EP (Figure 4c; Table S5, Supporting Information).
Although a considerable proportion of TAMs detected by differ-
ent EPs overlap, many TAMs are unique to an individual EP, and
the reliability of such EP-specific TAMs was supported by their
association with known functional genes (Table S5, Supporting
Information). Moreover, the identification of such unique TAMs
illustrates the advantage of genetic analysis with PP parameters
derived from multiple EPs. In addition, multi-environment joint
GWAS to identify TAMs controlling G×E interactions in our
study showed that very few loci overlap between PP and G×E,
which is consistent with reports in other species,[48,49] and sug-
gests that PP and G×E interactions likely have different genetic
basis. Overall, these results emphasize the need to adopt differ-

on genomic best linear unbiased prediction (GBLUP), gaussian kernel and deep kernel. EAD-GB, EAD-GK and EAD-DK: main additive plus dominance
effects model based on GB, GK and DK. EAD+GE-GB, EAD+GE-GK and EAD+GE-DK: main-effect EAD plus G×E deviation model based on GB, GK
and DK. EADW-GB, EADW-GK and EADW-DK: main-effect EAD with main envirotype information model based on GB, GK and DK. EADW+GW-GB,
EADW+GW-GK and EADW+GW-DK: main-effect EADW plus reaction norm for GE model based on GB, GK and DK. a) Model performance compar-
ison for plant height prediction in diverse scenarios. b) Model performance comparison for flowering time prediction in diverse scenarios. c) Model
performance comparison for grain test weight prediction in diverse scenarios. d) Model performance comparison for grain yield prediction in diverse
scenarios.
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Figure 7. Multi-environment joint genomic prediction cross-environments and cross-genotypes. a) Environmental clustering tree for all 36 cultivated
environments. Different font colors represent cultivated environments from different datasets. b) Neighbor-joining tree for all 1539 maize hybrids.
Different line styles and colors represent genotypes from different datasets. c) Multi-environment joint phenotypic prediction cross-genotypes. d) Multi-
environment joint phenotypic prediction cross-environments. e) Multi-environment joint genomic prediction cross-environments and cross-genotypes.
NaN indicates missing Pearson’s correlation coefficient due to a lack of observed phenotypic data. PH: plant height; FT: flowering time; GTW: grain test
weight; GY: grain yield.

ent approaches to mine environment-responsive genetic loci af-
fect maize phenotype.

Incorporating environmental data into genomic prediction
is now widely accepted to enhance accuracy in predictive
modeling.[29–31,50,51] In addition, numerous studies have used
TAMs as features in genomic prediction.[26–28] Analysis of our
genomic predictions confirmed conclusions of previous studies,
and further demonstrated that incorporating EPs with reduced
dimensionality based on maize developmental stages could sig-
nificantly improve predictive accuracy (Figure 5), potentially due
to the close relationship maize growth patterns with develop-

mental stage that renders these EPs informative of likely phe-
notype. Additionally, we found that using Main-TAMs as fea-
tures yields similar predictive accuracy to E-TAMs, whereas us-
ing both Main-TAMs and E-TAMs together obviously increases
predictive accuracy, even surpassing models that use All-SNPs as
features (Figure 5). These results highlight the value of E-TAMs
in genomic prediction and support the application of E-TAMs in
breeding.

As ML models have shown strong capacity to process large-
scale datasets, synthesize multi-omics data, and capture com-
plex feature relationships,[52–54] we employed an AutoML frame-
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work to construct a multi-environment joint predictive model
for PH, FT, GTW, and GY traits, which enabled the inclusion
of all RD_EPs in the predictive model, providing rich environ-
mental feature information. In contrast, other models, such as
that of Li et al. (2021),[21] only permit the use of a single EP
most correlated with phenotype in a specific time window to
build predictive models. Moreover, AutoML framework also per-
mits the selection of various base machine learning algorithms
for model training and ensembling, thereby enhancing the pre-
dictive performance of the model. In various complex predic-
tion tasks, our model consistently outperformed seven statistical
prediction methods across different traits and prediction tasks
(Figure 6), thus demonstrating its strong potential for applying
in crop breeding. Moreover, predictions based on three inde-
pendent test datasets indicated that our Auto-GS model also ex-
hibits good predictive ability with new datasets and shows ex-
cellent scalability (Figure 7). However, it should be noted that
prediction accuracy still largely depends on genetic and environ-
mental relationships between the training and test sets, which
is a challenge commonly faced by all current genomic predic-
tion methods.[55,56] Solutions to this issue may lie in the design
of breeding experiments.[57–59] In summary, our research high-
lights the advantages of Auto-GS model over statistical models in
genomic prediction.

The theoretical basis for the superiority of our genomic selec-
tion model over conventional models partially lies in the integra-
tion of RD_EPs. The reduction of EPs to RD_EPs aligned with
specific developmental stages allows the model to better capture
the nuanced effects of EPs across different growth phases. Con-
ventional models often face the challenge to incorporate the en-
vironment in a dynamic manner, instead using static or averaged
environmental data that do not account for temporal changes
in plant-environment interactions. By contrast, our approach dy-
namically aligns environmental conditions with maize develop-
mental stages, providing a more precise understanding of how
these conditions impact traits like FT and GY. Furthermore, the
dimensionality reduction of EPs was carefully designed to en-
sure that the reduced parameters are biologically meaningful, as
they correspond to key developmental stages in maize growth.
By aligning EPs with these stages, we reduce noise and focus on
the most relevant EPs that influence phenotypic variation. This
dimensionality reduction also helps mitigate overfitting, a com-
mon issue in high-dimensional data analysis, leading to more
stable and generalizable predictions.

While this study focuses on maize, the methods employed
here are broadly applicable to other crops. The concept of inte-
grating environmental data into genomic selection models can
be adapted to crops like wheat, rice, and soybean, which also ex-
perience significant G×E interactions. The use of AutoML in ge-
nomic prediction models provides a scalable and flexible frame-
work that can be customized to other species by adjusting devel-
opmental stages and EPs specific to each crop. By adopting this
approach, breeding programs worldwide could be able to acceler-
ate the development of climate-adaptive varieties, enhancing food
security in the face of global environmental change.

The application of environment-responsive genetic loci in crop
breeding is a key strategy for improving adaptability. However,
prior to introgression, such loci require validation of their bio-
logical relevance and identification of their causal genes. Here,

we identified numerous G×E-TAMs and PP-TAMs, and con-
ducted preliminary validation of their contributions to pheno-
typic variation through extensive statistical analyses and SHAP
interpretation. Although the results supported the reliability of
these loci, the genes underlying their respective effects have yet
to be identified. Future work can address this knowledge gap
through systematic functional characterization of these loci. For
example multi-environment transcriptomic analyses can be used
to prioritize candidate genes associated with G×E-TAMs and
PP-TAMs. Maize mutant libraries and/or targeted gene-editing
can be employed in multi-environment phenotypic evaluations
to verify gene functions at scale. This functional validation of
environment-responsive genes can facilitate their subsequent de-
ployment in breeding programs aimed at developing climate-
resilient maize hybrids.

4. Experimental Section
Germplasm Accessions and Their Phenotypes: Dataset I: The 1539 maize

hybrids derived from the G2F dataset,[41,42] which were divided into
four subsets: Maize1000, Maize180, Maize331, and Maize359. Maize1000
comprised 1000 hybrids phenotyped across seven environments in 2020
and 2021, serving as the training population for GWAS and genomic selec-
tion. Maize180, consisting of 180 hybrids phenotypically assessed in the
same environments, was employed to test model performance and predict
phenotypes across genotypes. This dataset is referred to as the untested
genotypes in tested environments. Maize331, a subset of 331 hybrids from
the Maize1000 dataset, underwent phenotypic evaluation in 11 additional
environments in 2020 and 2021. This dataset was used to test model per-
formance and conduct predictions across environments referred to as the
tested genotypes in untested environments. Maize359 included 359 hy-
brids phenotypically evaluated in 18 additional environments in 2022. This
dataset was used to test model performance and conduct genomic pre-
diction across environments and genotypes, and was referred to as the
untested genotypes in untested environments. Detailed descriptions of
the phenotypic experimental conditions are detailed in Table S1 (Support-
ing Information). Tested phenotypes include PH, FT, GTW, and GY.

Dataset II: The 8652 maize hybrids were derived from 30 F1 popula-
tions, which were generated by crossing 1428 inbred lines from the CU-
BIC (Complete-diallel plus Unbalanced Breeding-derived Inter-Cross) syn-
thetic population as a maternal pool with 30 paternal testers from diverse
heterotic groups.[60] Phenotypic evaluation of PH, FT, and ear weight (EW)
traits was conducted in the 8652 hybrids across five locations in North-
ern China (Yushu, Jilin Province, 43°42′N, 125°18′E; Shenyang, Liaoning
Province, 42°03′N, 123°33′E; Beijing, 40°10′N, 116°21′E; Baoding, Hebei
Province, 38°39′N, 115°51′E, and Xinxiang, Henan Province, 35°27′N,
114°01′E) over two growing seasons (2014 and 2015). The hybrids were
partitioned into three datasets: Maize2808, Maize366, and Maize5844.
Maize2808 underwent phenotypic evaluation in 2014, Maize366, a sub-
set of Maize2808, was evaluated in 2015, and Maize5844, which has no
genotypic overlap with the other two datasets, was also evaluated in 2015.
Maize2808 was used for GWAS analysis and construction of the genomic
prediction model, Maize366 was used to test cross-environment predic-
tive ability, and cross-genotype and cross-environment predictive capabil-
ities were assessed using Maize5844.

Dataset III: The wheat dataset included 286 high-yielding, advanced
elite lines of spring wheat (Wheat286), with PH, FT, and yield (YLD) evalu-
ated over four growing seasons (from 2009 to 2013) at the CIMMYT exper-
imental station near Ciudad Obregón, Sonora State, in Northwest Mexico
(27.20°N, 109.54°W).[61] This dataset served as the training population for
GWAS and genomic selection.

Heritability of Traits: The broad-sense heritability (H2) of PH, FT, GTW,
and GY in the Maize1000 dataset was calculated using the formula: H2 =
𝜎

2
g ∕(𝜎2

g + 𝜎
2
e
L

), with the function lmer (Trait ∼ (1|Line) + (1|Env)) in the R
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package “lme4”.[62] Here, 𝜎2
g represents genetic variance, 𝜎2

e represents
environmental variance, and L represents the number of environments.

Environmental Data: Environmental data were downloaded from the
NOAA (https://www.worldclim.org/) and WorldClim (https://power.larc.
nasa.gov) databases based on the location and dates of each experiment.
These data include DL, daily maximum and minimum temperatures, RH,
PRE, and PAR. GDD from the date of sowing were calculated using the
formula: GDD = (Tmax + Tmin) ÷ 2 − Tbase, where Tmax is the daily max-
imum temperature (86°F), Tmin is the daily minimum temperature, and
Tbase is the base temperature for activity (50°F). If the Tmax exceeds 86°F,
it is set to 86°F, and if the Tmin exceeds the Tbase , it is set to 50°F. Four
derived parameters—DTR, PTS, PTR, and PTT—were calculated using
the following formulas: DTR = Tmax − Tmin; PTS = (T2

max − T2
min) × DL2;

PTR = GDD ÷ DL; PTT = GDD × DL.
Automated Machine Learning Framework: An AutoML framework was

designed to integrate data processing, environmental feature handling,
GWAS, model training, and phenotypic prediction. The data processing
and feature handling functions performed genotype quality control, di-
mensionality reduction of EPs, and calculation of PP parameters. GWAS
was conducted using the 3VmrMLM method[43] to identify TAMs associ-
ated with specific traits, which were then used as genetic features in model
training along with RD_EPs. To train the model, a variety of base machine
learning models were integrated, using the Optuna automated hyperpa-
rameter tuning algorithm to optimize the model parameters, a stacking
algorithm for model ensembling to improve predictive accuracy, and SHAP
to enhance model interpretability.[44,45,46] The phenotype prediction func-
tion facilitated validation using independent test data, including predic-
tions for untested genotypes in a tested environment, tested genotypes
in untested environments, and untested genotypes in untested environ-
ments. PCC was used to evaluate the predictive accuracy of the final model.

Genotype Data Processing: The raw genotype data of Dataset I in-
cluded 437214 SNPs. First, the Maize1000 dataset was filtered and used
to inform the filtering of the other three maize subsets. SNPs with a miss-
ing rate greater than 30% were removed from Maize1000. Missing geno-
types were imputed using Beagle software.[63] Multiallelic SNPs and those
with genotype frequencies (AA, Aa, and aa) below 0.02 at each locus were
excluded. After filtering, 149719 high-quality SNP markers were retained.
This retained set of SNPs was then applied as an index for the Maize180,
Maize331, and Maize359 datasets to filter other SNPs, ensuring all re-
tained SNPs matched those in Maize1000 dataset. Finally, all datasets re-
tained 149719 SNPs for subsequent analysis.

The raw genotype data of Dataset II comprised 4549828 high-quality,
imputed SNPs. Due to the excessively large number of markers, which
hindered efficient analysis, we followed the report by Yang et al. (2022)[64]

and extracted 156269 high-quality SNPs for subsequent analysis. At the
same time, genotyping in Dataset III was performed by Illumina iSelect
90K SNP assay, yielding data for 26814 SNPs.[61]

Dimensionality Reduction of Environmental Data: The dimensionality
reduction process for environmental data involved two main steps. First,
the growth period of each genotype was divided into 36 development
stage-environment windows (36 windows for maize and 11 for wheat)
based on the relationship between the accumulated GDD and the devel-
opment stage.[47,65] Then, the development stage-environment windows
of each genotype were used to segment other EPs such as DL, RH, PRE,
PAR, DTR, PTS, PTR, and PTT. Finally, the average environmental data for
each EP were then calculated within each development stage-environment
window, resulting in a single value per EP per window.

Calculate Phenotypic Plasticity Parameters: The environmental mean
for each trait was calculated in every environment. The mean of each EP
was calculated using a sliding window approach, where windows spanned
point A to point B, which represents the development stage-environment
windows. The Pearson’s correlation coefficient between each trait’s envi-
ronmental mean and mean EP of point A to point B was calculated. Win-
dows with the highest correlations (r ≥ 0.90 or r ≤ −0.90) were identified
and used for linear regression analysis of the phenotypic values of each
genotype across all environments. The resulting linear equation provided
the intercept and slope, defined as two PP parameters, for each genotype
and used in subsequent GWAS.

Genome-Wide Association Analysis: GWAS was conducted on the
Maize1000, Maize2808, and Wheat286 dataset using the 3VmrMLM
method, which incorporates the first three principal components and the K
matrix to control for false positives.[43] This method conducts both single-
and multi-environment GWAS, detecting main effects and environment
interaction TAMs. It also estimates the additive and dominance effects of
TAMs, along with their environmental interactions. For this study, multi-
environment GWAS was carried out using multi-environment phenotypes
for each trait to identify the main effect and environment interaction TAMs
controlling these traits. Additionally, single-environment GWAS was con-
ducted using PP parameters (intercept and slope) for the four traits to
detect TAMs influencing PP.

Genomic Prediction: An ensemble genomic prediction model was gen-
erated with a focus on regression tasks, utilizing four base models known
for their efficacy in tabular data prediction: CatBoost, XGBoost, LightGBM,
and BayesianRidge.[66–69] During model training, hyperparameters were
optimized using the Optuna and Tree-Structured Parzen Estimator (TPE)
optimization algorithms,[44] a stacking algorithm for model ensembling
to improve predictive accuracy of the final model.[45] SHAP interpretabil-
ity technology was employed to interpret and provide biological explana-
tions for the model features.[46] Using the Maize1000, Maize2808, and
Wheat286 dataset for training, detected TAMs were divided into two cat-
egories: Main-TAMs and E-TAMs (including G×E-TAMs and PP-TAMs).
SNP markers identified within the upstream and downstream regions of
the TAMs for each trait, using intervals defined by either an LD thresh-
old of r2≥0.5 or half the maximum LD decay distance. These SNP mark-
ers, along with the calculated RD_EP values (nine EPs across 36 win-
dows for maize hybrid and nine EPs across 11 windows for wheat), were
applied as features for constructing a genomic prediction model. Five-
fold cross-validation was conducted for all analyses, with Pearson’s cor-
relation coefficient between observed and predicted values employed to
assess the model’s predictive performance. The constructed All-TAMs
plus RD_EPs model was subsequently tested with the different datasets
(Maize180, Maize331, Maize359, Maize366, and Maize5844) to evaluate
performance in multi-environment joint prediction across genotypes and
environments.

Population Structure Analysis: To clarify genetic relationships, phyloge-
netic trees were constructed for the Maize1000, Maize180, and Maize359
datasets using the Neighbor-Joining function in Tassel.[70,71] The trees
were visualized and refined using the iTOL online tool (https://itol.embl.
de/). Linkage disequilibrium analysis of the Maize1000 dataset was con-
ducted with PopLDdecay, using all default parameters except for the
MaxDist, which was adjusted to 5000.[72] Principal component analysis
(PCA) of the Maize1000 dataset was performed using Plink software to
elucidate its population genetic structure.[73]

Environmental Clustering Analysis: All genotype datasets (Maize1000,
Maize180, Maize331, and Maize359) were phenotypically assessed across
36 environments. Environmental clustering analysis was performed us-
ing the parameter values of nine EPs across these 36 development stage-
environment windows. The Euclidean distance algorithm[74] was em-
ployed to calculate the relationships between environments, and Ward’s
method[75] was used for environmental clustering.

Model Comparison Methods: The prediction accuracy of Auto-GS
model was compared with that of the JGRA (including JGRA.Norm and
JGRA.Marker) model, main additive-effect model based on reproduc-
ing kernel hilbert space, genomic best linear unbiased prediction, gaus-
sian kernel and deep kernel (EA-RKHS, EA-GB, EA-GK and EA-DK),
main additive plus dominance effects model based on RKHS, GB, GK
and DK (EAD-RKHS, EAD-GB, EAD-GK and EAD-DK), main-effect EAD
plus G×E deviation model based on RKHS, GB, GK and DK (EAD+GE-
RKHS, EAD+GE-GB, EAD+GE-GK and EAD+GE-DK), main-effect EAD
with main envirotype information model based on RKHS, GB, GK and
DK (EADW-RKHS, EADW-GB, EADW-GK and EADW-DK), and main-
effect EADW plus reaction norm for GE model based on RKHS, GB,
GK and DK (EADW+GW-RKHS, EADW+GW-GB, EADW+GW-GK and
EADW+GW-DK). These existing models efficiently leverage environmen-
tal data for genomic prediction.[18–22,51,76] The predictive accuracy of the
models was assessed as follows: 1) untested genotypes in the tested en-
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vironment were compared using leave-one-half-of-genotypes-out cross-
validation; 2) tested genotypes in untested environments were compared
using leave-one-environment-out cross-validation; and 3) untested geno-
types in untested environments were compared using joint leave-one-
environment-out and one-half-of-genotypes-out cross-validation.[17,19,22]

Prediction accuracy was calculated as the PCC between observed and pre-
dicted values.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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