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Short Summary 32 

Six candidate heterotic genes, including bZIP29, were identified in a maize hybrid 33 

population, with bZIP29 demonstrating significant heterotic effects in both the hybrid 34 

population and transgenic-derived hybrid lines. Functional characterization using 35 

tsCUT&Tag assays revealed that bZIP29 protein directly binds to a target gene 36 

regulated by its associated eQTL, as well as to six additional genes within co-expression 37 

modules. These findings offer new insights into the critical roles of key genes and their 38 

regulatory interactions in enhancing hybrid performance.  39 
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Abstract 40 

Understanding the role of heterotic genes in contributing to heterosis is essential for 41 

advancing hybrid breeding. We analyzed plant height (PH), ear height (EH), and 42 

transcriptomic data from a maize hybrid population. GWAS identified that dominance 43 

effects of QTL play a significant role in hybrid traits and mid-parent heterosis. By 44 

integrating GWAS, expression GWAS (eGWAS) analysis, and module eGWAS, six 45 

candidate heterotic genes underlying six QTL were prioritized, including one QTL 46 

spanned the bZIP29 gene. In the hybrid population, bZIP29 exhibited additive 47 

expression and dominance effects for both traits and mid-parent heterosis, with its 48 

favorable allele correlating positively with PH and EH. bZIP29 demonstrated 49 

dominance or over-dominance patterns in the hybrids derived from crosses between 50 

transgenic and wildtype lines, contingent upon its expression. tsCUT&Tag assay 51 

revealed that bZIP29 protein bound directly to a gene regulated by its associated eQTL 52 

and six genes within expression modules governed by their meQTL. Regulatory 53 

networks involving bZIP29 were more extensive in hybrid sub-populations compared 54 

to the parental population. This study offers insights into key heterotic genes and 55 

networks underpinning the robust growth of hybrid maize. 56 

Keywords: hybrid maize, mid-parent heterosis, dominance, heterotic gene, bZIP29 57 
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INTRODUCTION 59 

Hybrids generated by crossing two homozygous lines frequently exhibit superior 60 

agronomic traits compared to their parental lines. Enhancing hybrid performance is a 61 

crucial strategy for increasing crop production (Labroo et al., 2021). Future breeding 62 

efforts require a comprehensive understanding of the molecular regulation of diverse 63 

crop traits, particularly the quantitative trait locus/loci (QTL) and genes linked to 64 

agronomic characteristics (Wallace et al., 2018). Most studies elucidating gene 65 

functions used inbred lines as genetic background, which provide limited reference 66 

value for the understanding of phenotypic variation in hybrid population, since the QTL 67 

and genetic effects underlying trait performance are often different between inbred lines 68 

and hybrid lines (Guo et al., 2014; Ma et al., 2022). Therefore, studying the molecular 69 

basis and regulation of hybrid performance is essential for optimizing the use of 70 

heterosis. 71 

Conventional linkage-based studies using bi-parental populations, such as 72 

immortalized F2 populations, had identified many QTL associated with hybrid 73 

performance across various crop species, including rice (Hua et al., 2002; Zhou et al., 74 

2012), maize (Guo et al., 2014; Tang et al., 2010), and cotton (Liu et al., 2011). Notably, 75 

different QTL associated with hybrid performance and mid-parent heterosis (MPH) 76 

have been identified when distinct traits or populations were analyzed (Fiévet et al., 77 

2018; Xiao et al., 2021). Bi-parental populations inherently offer low mapping 78 

resolution, which complicates the identification of candidate genes underlying hybrid 79 

performance (Liu et al., 2020). As an alternative, hybrid populations generated by 80 

crossing diverse inbred lines have been used to dissect hybrid performance (Seymour 81 

et al., 2016). Such populations have significantly advanced our understanding of the 82 

genetic regulation of hybrid performance due to their high genetic diversity and 83 

mapping resolution (Huang et al., 2015; Seymour et al., 2016; Xiao et al., 2021). These 84 

analysis have even contributed to the expansion theories of heterosis (Bonnafous et al., 85 

2018; Jiang et al., 2017; Xie et al., 2022) and revealed that hybrid performance and 86 

MPH possess complicated genetic architectures shaped by numerous genes and their 87 

interactions (Jiang et al., 2017). While extensive genetic analysis can identify QTL 88 

associated with heterosis or hybrid performance, such investigations offer only limited 89 

insights into the regulatory patterns of heterotic QTL. 90 

Systems genetics approaches are powerful tools for investigating the genes, 91 
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pathways, and networks underlying traits in animals and plants (Civelek and Lusis, 92 

2014). Among these approaches, expression QTL (eQTL) mapping is widely used to 93 

establish genome-wide regulatory relationships between genomic variants and gene 94 

expressions (Fu et al., 2013; Li et al., 2013b). Genomic loci that influence the 95 

expression of multiple genes are typically defined as trans-acting hotspots, which are 96 

likely to play central roles in the regulatory networks governing target traits (Li et al., 97 

2020; Tan et al., 2022). However, identifying trans-acting associations can be 98 

challenging, as they are often sensitive to confounding factors stemming from 99 

biological and technical variations, as well as differences in tissues and developmental 100 

stages (Kolberg et al., 2020). Transcriptome profiles can be organized into dozens of 101 

modules, derived through dimensionality reduction analysis (Cote et al., 2022; Rotival 102 

et al., 2011). Recent studies indicated that module-eQTL (meQTL) mapping, which 103 

treats the eigenvalues of co-expression modules as composite traits, can improve the 104 

statistical power for detecting trans-regulatory hotspots (Kolberg et al., 2020; Rotival 105 

et al., 2011; Sun et al., 2023) and prioritize candidate genes associated with trait 106 

performance (Momozawa et al., 2018; Tang et al., 2021). Systems genetics studies in 107 

plants have primarily focused on establishing the relationships among genotypes, gene 108 

expressions, and phenotypes in inbred populations (Fu et al., 2013; Tang et al., 2021), 109 

with limited application hybrid populations. 110 

Several hypotheses, including dominance and over-dominance, have been 111 

proposed to explain heterosis (Hochholdinger and Baldauf, 2018). According to the 112 

dominance hypothesis, favorable and unfavorable alleles exhibit dominance and 113 

recessive effects on plant growth in hybrid lines (Jones, 1917). East proposed that the 114 

interaction of heterogeneous alleles caused over-dominance (East, 1936). However, 115 

evidence linking allele expression to heterotic effects remains limited. Springer and 116 

Stupar (Springer and Stupar, 2007) proposed that gene expression levels in inbred lines 117 

may be fixed above or below the optimal range, and mid-parent expression levels in 118 

hybrid lines may adjust gene expression level to within the optimal range. Consequently, 119 

hybrids may show dominance or over-dominance advantages due to mid-parent 120 

expression levels. Despite this, limited experimental evidence supports this model. 121 

To identify heterotic genes and regulatory networks that are associated with hybrid 122 

performance and heterosis, we constructed a hybrid population based on a North 123 

Carolina II (NCII) design. As PH and ear height (EH) showed strong heterosis and high 124 

heritability in maize (Hu et al., 2017; Li et al., 2021b), these traits were particularly 125 
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well suited for studying hybrid performance and heterosis. Additionally, the RNA 126 

expression profiles from this population provided valuable insights into the regulation 127 

of PH and EH. Integrating RNA expression data with genetic mapping facilitates 128 

deciphering the molecular regulation of heterosis. Specifically, this study included the 129 

following objectives: (1) conducting GWAS to uncover the genetic basis of hybrid 130 

performance for PH and EH; (2) identifying candidate genes and their regulatory 131 

networks underlying QTL through eGWAS and meGWAS analysis; and (3) 132 

demonstrate how the expression of the heterotic gene bZIP29 in hybrid lines influences 133 

heterosis. The identified heterotic genes and their associated networks contribute to our 134 

understanding of the mechanism of heterosis. 135 

RESULTS 136 

Identification of QTL for PH and EH in the hybrid population 137 

We developed an NCII population by crossing 78 maternal lines to four paternal 138 

lines, generating 314 hybrid lines (including two hybrid lines obtained by crossing 139 

parental lines). Whole genome re-sequencing data of the 82 parental lines identified 140 

4,628,240 high-quality SNPs (Fig. S1A). The heterozygous rates of parental lines were 141 

below 0.002 (Fig. S1B), while those of hybrid lines ranged from 0.19 to 0.42 (Fig. S1C). 142 

Phylogenetic analysis showed a relatively balanced distribution among the parental 143 

lines, with no highly divergent clades, and placed the four male parents in separate 144 

branches (Fig. S2A). The hybrid lines grouped into four divergent clusters, each 145 

corresponding to one of the four parental inbred lines (Fig. S2B). 146 

Phenotypic analysis revealed strong correlations between replicates within and 147 

among environments (Fig. S3A-B), as well as between PH and EH (Fig. S4), indicating 148 

the reliability of the phenotypic data. Comparisons between hybrid performance and 149 

mid-parent phenotypes revealed strong heterosis for both traits in all hybrids (Fig. 1A), 150 

with MPH ranging from 45 cm to 116 cm for PH (Fig. S5A), and from 19 cm to 68 cm 151 

for EH (Fig. S5B). The broad-sense heritability (𝐻2) of PH and EH is 0.96, while that 152 

of MPH is 0.70 for PH and 0.77 for EH (Fig. 1B), indicating that hybrid lines showed 153 

stable performance across environments. 154 

We focused on the genetic dissection of hybrid performance, but not MPH, because 155 

hybrid performance had higher 𝐻2 than its derivative MPH (Li et al., 2021b) (Fig. 1B), 156 

and both traits and their derivative MPH values showed strong correlation (Fig. S5C-157 

D). A mixed linear model incorporating both the additive and dominance effects of each 158 
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SNP, totaling 2,324,652 SNPs, was applied for GWAS and referred to as Additive-159 

dominance (AD) model (see Materials and Methods). The AD model effectively 160 

reduces potential type I error caused by population structure and cryptic relatedness 161 

(Fig. S6A-D). A total of 11 additive-QTL and 41 dominance-QTL were identified for 162 

PH, while 21 additive-QTL and six dominance-QTL were identified for EH (Fig. S7A-163 

D, Table S1). Comparison of the physical positions of QTL for PH and EH revealed 164 

that one additive-QTL and three dominance-QTL were associated with both traits (Fig. 165 

1C; Table S1). The phenotypic variance explained (PVE) of dominance-QTL were 166 

significantly higher than those of additive-QTL for both traits (Fig. 1D). We then 167 

screened the QTL regions for annotated genes or genes with reported homologs 168 

involved in plant growth or development as candidate genes. Six additive- and 15 169 

dominance-QTL for PH, as well as eight additive- and four dominance-QTL for EH, 170 

encompassed such candidate genes related to plant growth or development (Fig. S7A-171 

D; Table S1).  172 

We found that the favor scores, representing the cumulative effects of favorable 173 

QTL genotypes, were significantly correlated with hybrid performance for both traits 174 

(Fig. 1E-F), supporting the reliability of these QTL. The d/a (degree of dominance) for 175 

most dominance-QTL exceeded 1.0, whereas the d/a values for all additive-QTL ranged 176 

from -1.0 to 1.0 (Fig. S8A-B), consistent with the genetic effects of these QTL (Table 177 

S1), and indicating that the AD model can reliably differentiate between additive- and 178 

dominance-QTL. Further, QTL with higher d/a tended to contribute more significantly 179 

to phenotypic variances (Fig. S8A-B). The genetic effects of these QTL were further 180 

supported by the phenotypic comparisons among different genotype groups. 181 

Specifically, significant differences in hybrid performances were observed among all 182 

three genotype groups for additive-QTL (Fig. S9A-B). In contrast, for dominance-QTL, 183 

hybrids with heterozygous genotypes generally exhibited higher trait values than those 184 

with homozygous unfavorable alleles, with no significant differences compared to 185 

hybrids with homozygous favorable alleles (Fig. S9C-D). The MPH values of hybrids 186 

carrying heterozygous genotypes at dominance-QTL were generally higher than those 187 

of hybrids with homozygous alleles, a pattern not observed for additive-QTL (Fig. S10). 188 

Genome-wide identification of eQTL and eQTL hotspots 189 

To explore the regulation of hybrid performance, we conducted a genome-wide 190 

scan for eQTL by performig eGWAS on 28,706 expressed genes. A modified AD model 191 
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testing the combined effect (additive and dominance effects) of each marker was used 192 

for eGWAS so as to reduce the computation load of eGWAS. In total, 36,946 eQTL 193 

associated with 18,517 eGenes (eQTL-associated genes), accounting for 64.51% of the 194 

total analyzed genes, were identified across the genome, including 10,696 (28.95%) 195 

local-eQTL and 26,250 (71.05%) distant-eQTL (Fig. 2A). Notably, local-eQTL were 196 

distributed along the diagonal lines, and distant-eQTL were dispersed throughout the 197 

genome (Fig. S11). The number of eQTL regulating housekeeping genes (Lin et al., 198 

2014) were significantly less than those regulating non-housekeeping genes (Fig. S12, 199 

P-value of Wilcoxon rank sum test = 8.29E-6). Among the eGenes, 10,569 (57.08%) 200 

were regulated by distant-eQTL, 5,936 (32.06%) by local-eQTL, and 2,012 (10.87%) 201 

by both local- and distant-eQTL (Fig. 2B). Out of the local-eQTL, 42.84% were located 202 

within 10 kb of transcription start sites (TSS) of their target eGenes (Fig. 2C). Most 203 

eGenes were associated with a single eQTL (Fig. 2D). Comparison of the PVEs of lead 204 

SNPs in eQTL revealed that local-eQTL had larger contributions to the variances of 205 

eGene expressions than distant-eQTL (Fig. 2E). 206 

To identify potential regulatory nodes and candidate genes associated with hybrid 207 

performance, we analyzed eQTL hotspots co-localizing with QTL. A genome-wide 208 

scan of global eQTL identified 552 eQTL hotspots, of which, 42 were located within 209 

200 kb of 35 QTL (Fig.2F, Table S2). For example, hotspot C10_Hot26 co-located with 210 

PH_Dom3 (a dominance-QTL for PH) encompassing the putative candidate gene GRF5 211 

(Fig. S13A). C10_Hot26 regulated the expression of 69 eGenes (Table S3; Fig. 2G). 212 

Correlation analysis revealed that eGenes involved in stress response and reproductive 213 

development, such as GSNAP, MNS1, WRKY11, CBR1, PPT1, and ALY3, were 214 

positively correlated with GRF5 expression but negatively corelated or uncorrelated 215 

with PH. In contrast, eGenes involved in nutrient metabolism and signal transduction, 216 

such as SHR5, ATG8C, and CML, were negatively correlated with GRF5 expression 217 

but positively corelated with PH (Fig. S13B). Comparisons of gene expression between 218 

hybrids with different genotypes at PH_Dom3 showed that the hybrids carrying the 219 

homozygous favorable genotype (TT) had reduced expression of GRF5, CBR1, and 220 

ALY3, and elevated expression of ATG8C and CML (Fig. S13C). These results align 221 

with the hypothesis that the favorable allele of PH_Dom3 may increase PH by 222 

modulating the expression of GRF5 and associated eGenes. Similar results were 223 

obtained for other hotspots. Hotspot C4_Hot21 co-located with PH_Dom18, 224 

encompassing the putative candidate gene SBP7 and associated with 49 downstream 225 
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eGenes, including key genes involved in nutrient metabolism and plant development 226 

(Table S3; Fig. 2G). Hotspot C7_Hot08, co-located with PH_Dom34, spanned the 227 

putative candidate gene CRF4. Hotspot C7_Hot08 was associated with 36 eGenes, 228 

including essential genes involved in photosynthesis, nutrient metabolism, and the cell 229 

cycle (Table S3; Fig. 2G). These findings suggest that the candidate genes within the 230 

QTL hotspots may regulate PH by influencing the expression of downstream eGenes. 231 

Identification of co-expression modules and module-eQTL 232 

To further elucidate the regulatory networks underlying hybrid performance, co-233 

expression modules in the hybrid population were identified by independent component 234 

(IC) analysis. As a result, 205 ICs were identified as co-expression modules (Table S4). 235 

The number of genes assigned to IC modules ranged from 10 to 841, with a median of 236 

250 (Fig. S14). Correlations between the latent features of ICs and the tested traits 237 

revealed that 25 ICs were significantly correlated with PH, 47 ICs with EH, and 20 ICs 238 

with both traits (Pearson correlation, P < 0.01) (Fig. 3A, Table S4). Additionally, more 239 

ICs showed positive correlations with the tested traits than negative correlations (Fig. 240 

3A). GO enrichment analysis of the top ten positively correlated and top five negatively 241 

correlated modules indicated that genes in positively correlated modules were 242 

significantly enriched in biological processes related to plant vegetative growth, while 243 

genes in negatively correlated modules were enriched in processes associated with plant 244 

reproductive growth and stress response (Table S4; Fig. 3B-C). 245 

To identify additional key regulators not detected in eGWAS, we conducted 246 

module eGWAS (meGWAS) using the AD model for the latent features of the 205 ICs. 247 

A total of 234 meQTL associated with 84 ICs were identified, including 142 meQTL 248 

associated with 46 trait-correlated ICs (Fig. 3D, Table S5). We employed two strategies 249 

to confirm the reliability of these meQTL: Firstly, we compared the physical positions 250 

of these meQTL with those of eQTL hotspots, finding that 125 (53.42%) meQTL were 251 

located within 200 kb of eQTL hotspots (Table S5). Secondly, we tested whether eQTL 252 

regulating genes within a particular IC were significantly enriched in the 200 kb 253 

flanking regions of a corresponding meQTL by carrying out Fisher's exact tests (see 254 

Materials and Methods), and found significant enrichments in the flanking regions of 255 

66 (28.21%) meQTL (Table S5). These comparisons indicated a high degree of 256 

concordance between the eGWAS and meGWAS findings; however, meGWAS also 257 

detected meQTL that did not co-locate with any eQTL hotspot. 258 
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We then focused on the meQTL associated with trait-correlated ICs. Among the 259 

104 meQTL associated with PH-correlated ICs, 28 (26.92%) co-located with QTL for 260 

PH, 40 (38.46%) overlapped with eQTL hotspots, and eQTL underlying genes assigned 261 

to the relevant IC modules showed enrichment in the flanking regions of 33 (31.73%) 262 

meQTL (Fig. 3E). For the 101 meQTL associated with EH-correlated ICs, nine (8.91%) 263 

co-located with QTL for EH, 45 (44.55%) overlapped with eQTL hotspots, and eQTL 264 

regulating genes assigned to the relevant IC modules showed enrichment in the flanking 265 

regions of 37 (36.63%) meQTL (Fig. 3F). The regulatory networks constructed from 266 

genes assigned to IC modules may illustrate the regulatory relationships of QTL that 267 

co-locate with meQTL. For instance, PH_Add1 (an additive-QTL for PH) co-located 268 

with an meQTL (IC187_C10M9366861) that regulates the latent feature of IC187, and 269 

six genes of IC187 were regulated by an eQTL hotspot (C10_Hot10) in the same region 270 

(Fig. S15A). Additionally, 29 genes of IC187 showed co-expression with GATA7, a 271 

candidate gene within PH_Add1 (Fig. S15B). Genes assigned to IC187 were 272 

significantly enriched in biological processes such as carbohydrate metabolism, 273 

microtubule assembly, and auxin biosynthesis (Fig. 3B). Given that IC187 was 274 

positively correlated with PH, it is plausible that PH_Add1 and its candidate gene 275 

GATA7 may function as a regulatory hub to control PH by up-regulating genes in 276 

module IC187.  277 

Similarly, an meQTL (IC176_C8M170930342) associated with the latent feature 278 

of IC176 co-located with PH_Dom38 (a dominance-QTL for PH), EH_Dom6 (a 279 

dominance-QTL for EH), and an eQTL hotspot (C8_Hot40) regulating eight eGenes. 280 

The QTL encompassed the putative candidate gene MYB163 (Fig. S16A). Among the 281 

126 genes in IC176, four were regulated by C8_Hot40 (Fig. S16B). GO enrichment 282 

analysis revealed that the genes in this module were enriched in biological processes 283 

related to plant reproductive development and stress response (Fig. 3C). Since IC176 284 

was negatively correlated with EH, it is plausible that PH_Dom38 and EH_Dom6 may 285 

regulate PH and EH by repressing genes in module IC176. 286 

bZIP29 represents a candidate gene for hybrid growth 287 

To select a candidate gene for functional analysis, we focused on the three 288 

dominance-QTL shared by both PH and EH: PH_Dom10 (EH_Dom3), PH_Dom38 289 

(EH_Dom6), and PH_Dom29 (EH_Dom5) (Table S1), as dominance-QTL contributed 290 

more to variations of hybrid performance than additive-QTL (Fig. S8-10). We found 291 
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that PH_Dom10 encompassed bZIP29, and PH_Dom38 encompassed MYB163 (Table 292 

S1). Notably, PH_Dom10 co-located with two closely linked eQTL hotspots 293 

(C1_Hot60 and C1_Hot61; Table S2) that merged into a single hotspot (C1_Hot60*) 294 

when the hot_scan distance cutoff was increased to > 50 kb (Fig. 4A). Four meQTL 295 

associated with IC181 and IC176 were also located in this region (Fig. 3C; 4A; Table 296 

S5). Thus, bZIP29 was selected as a candidate gene for hybrid growth. 297 

bZIP29 encoded a basic leucine zipper (bZIP) transcription factor and showed 298 

strong linkage disequilibrium (LD) with the peak SNPs of the QTL, eQTL, and meQTL 299 

(Fig. 4B). Notably, bZIP29 was significantly and positively correlated with both traits, 300 

and most target eGenes regulated by C1_Hot60* were also significantly correlated with 301 

both traits and bZIP29 expression (Fig. 4C). Among these eGenes, AGD1 (involved in 302 

cytoskeleton organization), SLC35F5 (encoding solute carrier), bHLH48 (participating 303 

in developmental regulation), RPS17 (30S ribosomal protein), and PAP1 (associated 304 

with chloroplast development) were positively correlated with both traits and bZIP29 305 

expression, whereas genes involved in disease resistance or stress responses (such as 306 

GSTF8, UBP12) were negatively correlated with bZIP29 expression (Fig. 4C). A local-307 

eQTL corresponding to bZIP29 may drive differential regulation of this gene in the 308 

hybrid population and influence the expression of downstream eGenes. 309 

A common peak SNP (C1M296443013) with dominance effects was significantly 310 

associated with both traits (Fig. 4A). Comparisons of hybrid performance and MPH 311 

values among hybrids with different genotypes at C1M296443013 revealed that those 312 

with the homozygous favorable genotype (CC) or the heterozygous genotype (CT) 313 

exhibited higher phenotypic and MPH values than those with the homozygous 314 

unfavorable genotype (TT) (Fig. 4D-E; Table S6), indicating dominance effects at this 315 

locus for both traits and their MPH values. In contrast, bZIP29 expressions in hybrids 316 

with the heterozygous genotype were significantly lower than in those with the 317 

homozygous favorable genotype, yet significantly higher than those with the 318 

homozygous unfavorable genotype (Fig. 4F), suggesting an additive effect on bZIP29 319 

expression. Notably, bZIP29 expression was significantly associated with MPH for 320 

each trait (Fig.S17), supporting that bZIP29 exerts a heterotic effect on both PH and 321 

EH. Further comparisons of eGene expressions among the three genotype groups 322 

showed that hybrids with the homozygous favorable or heterozygous genotype had 323 

lower expression levels of negatively correlated eGenes (GSTF8 and UBP12) (Fig. 324 

S18A) and higher expression levels of positively correlated eGenes (SLC35F5, 325 
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bHLH48, and RPS17) (Fig. S18B) compared to those with the homozygous unfavorable 326 

genotype. The above results suggest that the favorable allele of this QTL may enhance 327 

PH and EH by influencing the expression of bZIP29 and its downstream eGenes. 328 

To further investigate the functional variations associated with bZIP29, LD 329 

analysis was performed between the peak SNP, C1M296443013, and all potential 330 

variations within the gene body and upstream region of bZIP29. Two variations, 331 

C1M296588268 (a SNP marker) and C1M296596845 (an INDEL marker), showed 332 

strong LD with the peak SNP (Fig. S19A). Notably, both variations are located within 333 

the upstream region of bZIP29, suggesting their potential role as cis-regulatory 334 

elements influencing bZIP29 expression. Among the haplotypes clustered around these 335 

two variations, four haplotype-based genotypes (HapGs) had frequencies exceeding 336 

0.05 in the hybrid population. Subsequent phenotypic and expression-level 337 

comparisons of bZIP29 across these HapGs revealed that hybrids carrying the 338 

heterozygous haplotype (HapG2) exhibited significantly higher plant height (PH), ear 339 

height (EH), and bZIP29 expression levels compared to those with the homozygous 340 

haplotype (HapG4) (Fig. S19B). These findings highlight C1M296588268 and 341 

C1M296596845 as strong candidates for validating the functional variations of bZIP29. 342 

Validation of the heterotic effects of bZIP29 on PH and EH 343 

To validate the dominance effects of bZIP29, we obtained two independent loss-344 

of-function mutants (DEL lines) generated with the CRISPR-Cas9 system, along with 345 

two independent over-expression lines (OE lines) (Yang et al., 2022). The expression 346 

levels of bZIP29 in WT lines were significantly higher than those in both DEL lines 347 

and DEL-derived F1 lines, and significantly lower than those in both OE lines and OE-348 

derived F1 lines (Fig. 5A-B), reflecting the additive expression pattern observed in the 349 

hybrid population (Fig. 4E). DEL-derived F1 lines were taller than DEL lines, but 350 

smaller than the WT line (Fig. 5C-D), indicating an additive effect on both PH and EH. 351 

However, over-expression of bZIP29 resulted in increased PH and EH, displaying an 352 

over-dominance and dominance pattern in OE1F1 and OE2F1, respectively (Fig. 5E-353 

F). The differences in effects between the two OE-derived F1 lines may be related to 354 

the expression level of bZIP29.  355 

A tsCUT&Tag assay with two high-quality replicates (Fig. 5G) was performed to 356 

identify downstream genes targeted by the bZIP29 protein using maize inbred line B73. 357 

A total of 3,363 genes were targeted by the bZIP29 protein in both biological replicates. 358 
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These target genes were significantly enriched in various biological processes, 359 

including metabolism, stress response, development, and plant hormones (Fig. S20). 360 

Notably, 28 of these genes were encompassed by 21 QTL (Table S7). Among the 18 361 

eGenes regulated by C1_Hot60*, the promoter of one target eGene (PTR3) was bound 362 

by the bZIP29 protein. Additionally, the promoters of six of the 186 genes in IC176 and 363 

IC181 were bound by the bZIP29 protein (Fig. 5H-I, Table S7), indicating significant 364 

enrichment of eGenes (P-value of Chi-square test = 1.24E-3) and module genes (Chi-365 

square test P = 4.05E-27) among the genes bound by the bZIP29 protein. Furthermore, 366 

other eGenes and module genes may be indirectly regulated by bZIP29. Since genes in 367 

IC181 were enriched for meristem development, while genes in IC176 were enriched 368 

for stress response and meiosis (Fig. 3C), bZIP29 may positively regulate PH and EH 369 

by activating the genes involved in vegetative growth and repressing those related to 370 

stress response and reproductive development. A complex regulatory network, 371 

constructed by integrating eGenes and genes in the two ICs, along with genes targeted 372 

by the bZIP29 protein (Fig. 5J), suggests that bZIP29 participate in multiple biological 373 

processes. 374 

bZIP29-centered regulatory networks in hybrids are more extensive and complex 375 

than that in the parental lines 376 

To further investigate the role of bZIP29 in heterosis, we divided the entire hybrid 377 

population into four sub-populations based on the four male testers and compared the 378 

bZIP29-centered co-expression networks of these sub-populations with that of the 379 

parental population. Co-expression analysis using Pearson correlation showed that the 380 

numbers of genes co-expressed with bZIP29 in the hybrid sub-populations are 9.67 to 381 

25.42 times greater than that in the parental population (Fig. 6A). Additionally, we 382 

found that the co-expression networks of bZIP29 in the hybrid and parental populations 383 

shared both common and unique genes (Fig. 6A). GO enrichment analysis revealed that 384 

the co-expressed genes in the hybrid sub-populations were significantly enriched for 385 

common GO terms related to metabolic processes, stress responses, developmental 386 

processes, and plant hormones. In contrast, co-expressed genes in the parental 387 

population were enriched for only four GO terms (Fig. 6B). Furthermore, the co-388 

expression networks of the hybrid sub-populations exhibited similar patterns when 389 

compared to each other, and were more extensive and complex than that of the parental 390 

population (Fig. 6C). These findings suggest that bZIP29 contributes to heterosis and 391 

hybrid performance in PH and EH by participating in complex regulatory networks that 392 
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display partial conservation among hybrid sub-populations. 393 

DISCUSSION 394 

Systems genetics approaches have been used to identify genes associated with 395 

kernel size and benzoxazinoid biosynthesis in maize (Li et al., 2022; Wang et al., 2018), 396 

seed size in cotton (Zhao et al., 2023), and flowering time and growth related traits in 397 

Brassica napus (Li et al., 2018). In this study, we applied systems genetics for the first 398 

time to a hybrid population to dissect the molecular basis of hybrid performance in 399 

maize. We conducted a GWAS of PH and EH using a diverse hybrid population, and 400 

integrated these results with eGWAS and meGWAS. Candidate genes for 41% of the 401 

detected QTL (33 out of 79 QTL) were identified based on literature information on 402 

annotated genes within QTL regions. Six genes in six QTL regions were prioritized by 403 

assessing their co-localization with eQTL and meQTL. Furthermore, we evaluated the 404 

correlations between the expression levels of candidate genes with the tested traits. 405 

Additionally, we analyzed their co-expression patterns with genes located in eQTL 406 

hotspots and/or in ICs that are regulated by meQTL co-localized within the identified 407 

QTL regions. The systems genetics approach was suitable to uncover candidate genes 408 

for hybrid performance and heterosis and also provided insights into the molecular 409 

networks of candidate genes. Notably, one candidate gene, bZIP29, underlying a 410 

dominance-QTL for both PH and EH and overlapping with an eQTL hotspot and four 411 

meQTL, was validated in transgenic experiments to show heterotic effects for the tested 412 

traits. Co-expression analysis revealed that bZIP29 was involved in more extensive and 413 

complex networks in hybrid sub-populations than in the parental population. 414 

The advantages of using PH and EH to study hybrid performance and heterosis 415 

in maize 416 

To study the genetic basis of hybrid performance and heterosis in maize, we chose 417 

two traits showing high 𝐻2  to mitigate effects by environmental factors. The 418 

identification of 79 QTL (Table S1) backed this selection. PH and EH are strongly 419 

correlated traits (Li et al., 2017; Yin et al., 2022) (Fig. S4), and it was therefore reasoned 420 

that QTL in common to both traits would be particularly strong candidates for the 421 

identification of genes associated with hybrid performance. The identification of 422 

candidate genes MYB163 and bZIP29 for two out of four common QTL confirmed this 423 

notion. Although MPH is used frequently to study heterosis, it is a derived composite 424 
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trait calculated based on trait performance, and is therefore even more likely to be 425 

influenced by unexpected factors than hybrid performance (Fig. 1B) (Li et al., 2021b). 426 

Hence, we focused on PH and EH in the hybrid population rather than on MPH. 427 

Nonetheless, given the high correlation between hybrid performance with MPH (Fig. 428 

S5B-C) (Li et al., 2021b), the obtained insights may also be relevant for heterosis as 429 

we exemplified for the QTL spanning bZIP29. Gene expression in elongating 430 

internodes was informative to reveal the regulation of PH and EH (Sun et al., 2024; 431 

Wang et al., 2022). In this study, genome-wide expression profiles of internodes for the 432 

diverse hybrid population revealed several gene regulatory networks associated with 433 

PH and EH, and candidate genes associated with the tested traits could be prioritized 434 

based on co-localization of QTL for both traits with eQTL and meQTL. 435 

A diverse NCII population is particularly well-suited for investigating the genetic 436 

basis of hybrid performance and heterosis 437 

The parental lines of the NCII hybrid population showed great genetic diversity, 438 

and had negligible population structure, enabling high-resolution mapping of candidate 439 

genes. We used the AD model that integrates both additive and dominance kinship 440 

matrices, and respectively maps additive- and dominance-QTL by testing the additive 441 

and dominance effects of markers separately. The detected QTL did not have consistent 442 

effects across the four hybrid sub-populations, but overall positive contributions were 443 

noted in each sub-population (Fig. 1E-F). Although false positive can’t be completely 444 

excluded, the reliability of the QTL was supported by the results that the dominance 445 

degrees of the dominance-QTL were larger than those of the additive-QTL, and that the 446 

cumulative effects of all detected QTL showed strong correlation with hybrid 447 

performance (Fig. 1E-F), and that 33 QTL contained genes related to plants growth and 448 

development (Table S1). The effects of dominance-QTL were larger than those of the 449 

additive-QTL for PH and EH (Fig. S8A-B; Table S1). We therefore focused our study 450 

largely on dominance-QTL, and detailed analysis prioritized candidate genes for five 451 

of these dominance-QTL. Thus, in accordance with previous reports (Hashimoto et al., 452 

2021; Li et al., 2021b; Xiao et al., 1995), our results supported the substantial 453 

contribution of dominance-QTL to hybrid performance and heterosis of hybrid maize. 454 

Systems genetics approaches reveal candidate genes for hybrid performance and 455 

heterosis in maize 456 
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Genome-wide expression profiles can be exploited to map individual genes or 457 

groups of co-expression network modules (Feltus, 2014). Combining GWAS, eGWAS 458 

and eQTL hotspot analysis, we found that 42 eQTL hotspots were located within 200 459 

kb of 35 QTL (Table S2). Three eQTL hotspots were studied in detail and the candidate 460 

genes GRF5, SBP7, and CRF4 were prioritized. The three genes were selected because 461 

they were in strong LD with the lead SNP in the QTL and eQTL hotspot regions. 462 

Furthermore, all three genes showed co-expression with genes related to plant 463 

development or growth (Fig. 2G). Genes that were not associated with a local eQTL 464 

were also considered as candidate genes due to the possibility that a mutation of the 465 

coding sequence could affect the gene function without changing the transcript level. 466 

Likewise, it is possible that genome-wide thresholds may not permit the detection of 467 

some local eQTL. The GRF5 gene showed for example significant differences among 468 

different genotypic classes of the QTL (Fig. S13) but no local eQTL. 469 

The reported functions for GRF5, SBP7, and CRF4 are consistent with a putative 470 

role in controlling PH and EH. For example, SBP domain-containing genes participate 471 

in multiple growth and development processes. IPA1 regulates plant architecture in rice 472 

(Song et al., 2017) and TaSPL14 controls plant height in wheat (Cao et al., 2021). There 473 

are 30 SBP genes in maize, and these genes are regarded as promising candidate genes 474 

for improving plant architecture for high-density planting in maize (Wei et al., 2018). 475 

GRF5 was shown to regulate cell size, leaf size and root length in Arabidopsis 476 

(Lantzouni et al., 2020), leaf size and the content of zeatin and isopentenyladenine in 477 

poplar (Wu et al., 2021a), and transformation efficiency in some dicot and monocot 478 

species (Kong et al., 2020). CRFs represent a small subset of genes belonging to the 479 

AP2/ERF gene family of transcription factors, and CRF4 regulates biomass, root 480 

development, and 15NO3
− uptake in Arabidopsis (Varala et al., 2018). However, it 481 

should be pointed out that genes in LD with the candidate genes may also contribute to 482 

the eQTL hotspots. Annotation of the downstream eGenes and correlation analysis 483 

between the candidate genes with downstream eGenes or tested traits (Fig. S13; S15-484 

16; 4C) are therefore important to provide auxiliary evidence for the functional role of 485 

candidate genes. 486 

The extraction of key features representative for groups of co-expressed genes 487 

reduces dimensions, and facilitates genetic mapping of trans-regulatory eQTL that 488 

regulate a large number of genes. It was reasoned that meGWAS may complement but 489 

also support the results of eGWAS. Indeed, 13 out of 37 meQTL (35.14%), which were 490 
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associated with trait-correlated modules and were mapped within of 10 kb of QTL, were 491 

located within the flanking 10 kb of eQTL hotspots (Table S5). Integrating the 492 

meGWAS results and the genes of the co-expressed modules into the analysis provided 493 

detailed information on QTL regions, even if the associated hotspots did not encompass 494 

many genes as was shown for the three QTL spanning the candidate genes GATA7, 495 

MYB163, and bZIP29. Studies of candidate genes GATA7 and MYB163 in other plant 496 

species support a putative function in controlling PH and EH. Rice OsGATA7 modulates 497 

brassinosteroids-mediated regulation of plant growth and architecture (Zhang et al., 498 

2018) and MYB163 belongs to the R2R3-type MYB transcription factor group, which 499 

regulates specialized metabolism, development, and responses to stresses (Dubos et al., 500 

2010). 501 

bZIP29 represents a novel heterotic gene in plants 502 

bZIP29 was prioritized as a candidate gene for a common dominance-QTL for both 503 

PH and EH based on its correlations with both traits and with downstream genes 504 

belonging to the relevant hotspot and ICs (Fig. 4A-C). Two natural variations in the 505 

upstream region of bZIP29 were significantly associated with bZIP29 expression and 506 

may contribute to phenotypic differences between the different haplotype groups (Fig. 507 

S19). bZIP29 expression showed great variation, and had strong positive correlation 508 

with each trait (Fig 4C; 4E; S17), and such correlation was supported by OE- and DEL 509 

lines. Importantly, bZIP29 was associated with dominance effects for hybrid 510 

performance and heterosis in the hybrid population, and transgenic approaches 511 

confirmed its heterotic effects for PH and EH.  512 

bZIP29 regulated plant growth and the development of reproductive organs in 513 

Arabidopsis (Lozano-Sotomayor et al., 2016), and its maize ortholog regulated seed 514 

development by interacting with ZmABI19 (Yang et al., 2022). Thus, bZIP29 may 515 

function in different organs or at different stages of plant development. The organ- and 516 

stage-specific expression of bZIP29 supported this notion (www.maizegdb.org; 517 

http://minteractome.ncpgr.cn/searchelement.php). The result that the 3,363 target genes 518 

of bZIP29 protein were enriched on a variety of GO terms (Fig. S20) indicated that 519 

bZIP29 might have different functional roles depending on its organ- and stage-specific 520 

expression. Given that the roles of bZIP29 on plant growth have been validated in our 521 

study, as well as on kernel weight in a previous work (Yang et al., 2022), it would be 522 

meaningful to study the contribution of bZIP29 to hybrid performance of other traits in 523 
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the future. 524 

In addition to the large-effect Mendelian loci affecting heterosis, evidence for a 525 

substantial role of epistatic interactions in heterosis has also been documented (Jiang et 526 

al., 2017; Torgeman and Zamir, 2023). To study epistatic effects in a diverse hybrid 527 

panel was computationally challenging for a high-density SNP data set as the one used 528 

in this study. Therefore, we used an AD model which cannot discriminate dominance 529 

and epistatic effects, and it was possible that some detected dominance-QTL may act 530 

as epistatic QTL to affect the variations of the tested traits and gene expressions. 531 

Considering that bZIP29 was spanned by a dominance-QTL, and was involved in 532 

complex interactions (Fig. 5J; Table S7), it might be risky to verify its heterotic effect 533 

using one or a few hybrid lines derived from two distinct inbreds. Especially. bZIP29 534 

protein interacted with 3.3363 genes, including 28 QTL-spanned genes (Table S7), and 535 

acted as a core transcriptional regulator to regulate 18 eGenes (Table S2), some of 536 

which were related to plant development or stress tolerance (Fig. 4C). Above all, it is 537 

tempting to speculate that bZIP29 may regulate hybrid performance and heterosis by 538 

interacting with other genes as was shown for seed development in maize (Yang et al., 539 

2022). 540 

Both additive and non-additive expression is observed in hybrid lines, and these 541 

expression patterns may be related to heterosis (Pea et al., 2008) (Zhang et al., 2023) 542 

(Zhou et al., 2022). Springer and Stupar (Springer and Stupar, 2007) proposed that the 543 

expression levels may be too low or two high in inbred lines, causing adverse effects 544 

on phenotypes. The between-parental expression in hybrid lines may dilute the adverse 545 

effects, thereby causing dominance or over-dominance effects. OE-derived F1 lines are 546 

ideal materials for verifying their proposal. In this study, we found that the expression 547 

of bZIP29 in OE1 lines was higher than that in OE2 lines, and the adverse effects on 548 

OE1 lines were more severe than those on OE2 lines, indicating that the levels of 549 

bZIP29 expression were associated with their adverse effects. bZIP29 expressions were 550 

reduced in both OE-derived F1 lines, thus alleviating the adverse effects of bZIP29 on 551 

PH in the OE-derived F1 lines, resulting in over-dominance and dominance patterns for 552 

these traits in OE-derived hybrid lines. These results are consistent with Springer and 553 

Stupar’s proposal. 554 

The genes in the regulatory networks of bZIP29 in the four hybrid sub-populations 555 

showed enrichment in common GO terms (Fig. 6B-C), indicating that genes in these 556 

GO terms may be related to the vigorous growth of hybrid maize. Strikingly, the gene 557 
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regulatory network of bZIP29 in the parental population was much smaller than those 558 

of the hybrid sub-populations. Different network properties had been observed 559 

previously when metabolite correlation networks were analyzed, with most maize 560 

hybrids showing a higher network density than the corresponding parental lines (Lisec 561 

et al., 2011). Likewise, a higher connectivity was observed for the two reciprocal 562 

Arabidopsis hybrids than for the corresponding parents Col-0 and C24 (Andorf et al., 563 

2009). Based on these results, it was advocated that a systems biological approach 564 

focusing on interactions should be regarded complementary to conventional 565 

quantitative genetics approaches focusing on elucidating the roles of epistatic 566 

interactions of individual loci with the genetic background (Andorf et al., 2010). Future 567 

studies focusing on interactions should aim to decipher the underlying molecular basis 568 

for the complex regulatory networks in hybrids and their phenotypic consequences. 569 

Identification of genes associated with hybrid performance and heterosis has been 570 

proven to be a formidable task, nonetheless few successful efforts provided invaluable 571 

information on the molecular basis of heterosis in plants. In rice, OsMADS1, encoding 572 

a MIKC-type MADS-box transcription factor, showed incomplete dominance in an F2 573 

population. Introduction of a 15-bp genomic fragment spanning the intron-exon 574 

junction of OsMADS1 changed the sequence of the mature mRNA and the translated 575 

protein, leading to the increase of grain length and weight (Wang et al., 2019; Wang et 576 

al., 2024). Through integrated genetic and transcriptome analysis, it was postulated that 577 

the allelic heterozygosity of RH8, also known as Ghd8, could be the causal gene for 578 

yield heterosis in many rice hybrid varieties (Li et al., 2016). In tomato, the flowering 579 

gene SINGLE FLOWER TRUSS (SFT) showed an over-dominance effect for yield in 580 

distinct genetic backgrounds, and the genetic effect was associated with the suppression 581 

of growth termination mediated by SELF PRUNING (SP) (Krieger et al., 2010). 582 

BnaA9.CYP78A9 represents a heterotic gene for yield heterosis in oilseed rape. 583 

Heterozygosity in its upstream regulatory region caused partial dominance at 584 

expression and auxin levels, and resulted in non-additive expression of downstream 585 

genes (Ye et al., 2023). GWAS analysis based on an Arabidopsis half diallel population 586 

found that AGL50 (AGAMOUS-LIKE 50) dominantly controlled flowering time, and 587 

the function of AGL50 was verified in four genetic backgrounds (Seymour et al., 2016). 588 

In maize, population analysis revealed that ZAR1 and ZmACO2 showed over-589 

dominance effects for yield traits (Wang et al., 2023). Our results, together with 590 

previous results, showed that heterosis in plants is associated with many different 591 
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pathways, and despite these advancements information on how heterosis is regulated in 592 

crop plants is still fragmentary. 593 

CONCLUSION 594 

This study described the regulation relationships of QTL in a maize hybrid 595 

population. Combining GWAS, eGWAS, meGWAS and Fisher’s exact test prioritized 596 

six potential heterotic genes, among which, bZIP29 was spanned by a dominance-QTL 597 

in common to both PH and EH, two eQTL hotspots, and four meQTL underlying two 598 

ICs. The QTL spanning bZIP29 showed dominance effects for both hybrid performance 599 

and heterosis. Transgenic experiment confirmed that bZIP29 showed heterotic effects 600 

for plant growth. The tsCUT&Tag experiment and regulatory network analysis revealed 601 

the regulatory mechanism of heterosis involving bZIP29. This study revealed key genes 602 

and regulatory networks of hybrid performance and heterosis in maize. 603 

MATERIALS AND METHODS 604 

Population construction, phenotype evaluation, and phenotypic data analysis 605 

In this study, 78 maternal inbred lines (Table S8) were selected from a large maize 606 

association mapping panel which included 527 inbred lines with tropical, subtropical 607 

and temperate backgrounds (Gui et al., 2022; Li et al., 2013a; Yang et al., 2011). We 608 

selected the 78 maternal lines from the temperate sub-population of the association 609 

panel, so that the obtained hybrid lines can grow and flower normally in Northern China. 610 

Notably, the selected maternal lines exhibited a relatively balanced phylogeny 611 

distribution with no extremely divergent clades (Fig.S2A), which must benefit the 612 

genetic mapping of hybrid traits of the diverse hybrid population.  613 

The four male parents, including M01, M02, M03, and M04, were used in our 614 

previous study (Li et al., 2021a). Notably, the four male parents are in divergent clades 615 

(Fig.S2A). A hybrid population was constructed following NCII design, producing four 616 

hybrid sub-populations with each containing 78 hybrid lines. Two hybrid lines obtained 617 

by crossing M01 to M02, and M03 to M04. In total, 314 hybrid lines were used for 618 

phenotypic investigation and transcriptome sequencing. 619 

In the summer of 2018, the hybrid population was sown in Zhuozhou (ZZ, Hebei 620 

province; 39°29′N and 115°58′E), Xinxiang (XX, Henan province; 35°22′N and 621 

113°54′E) and Gongzhuling (GZL, Jilin province; 43°30′N and 124°49′E). Each hybrid 622 

was sown in a two-row plot with row space being 60 cm and plant space being 25 cm. 623 
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The population was arranged in an incomplete block design with each block containing 624 

a hybrid sub-population. Ten plants in each plot were evaluated for PH and EH after 625 

the flowering stage, and the outliers beyond the 1.5 interquartile range were excluded. 626 

The best linear unbiased estimates (BLUEs) were estimated in two steps as 627 

described in a previous study (Jiang et al., 2017). Briefly, in the first step, BLUEs of 628 

the population in each environment were obtained with a linear mixed model, which 629 

included the effects of genotypes, replicates and blocks nested within replicates. 630 

Genotype effect was used as the fixed effect and others as random effects. In the second 631 

step, BLUEs across environments were obtained with a linear mixed model, in which 632 

the genotype and environment effects were treated as fixed and random effects, 633 

respectively. BLUEs of parents and hybrids were used for subsequent genetic analysis. 634 

MPH was calculated as: 635 

𝑀𝑃𝐻 = 𝐵𝐿𝑈𝐸𝐹1 − (𝐵𝐿𝑈𝐸𝑀 + 𝐵𝐿𝑈𝐸𝐹)/2              (1) 636 

To estimate 𝐻2 , best linear unbiased predictions (BLUPs) were calculated by 637 

fitting a linear mixed model, in which all effects were treated as random effects. 𝐻2 638 

was calculated as (Cullis et al., 2006): 639 

𝐻2 = 1 −
𝑣𝐵𝐿𝑈𝑃

2𝜎𝐺
2                           (2) 640 

where 𝜎𝐺
2 is the genotypic variance and �̅�𝐵𝐿𝑈𝑃 is the mean variance of the differences 641 

between each pair of BLUPs. 642 

Transcriptome sequencing and analysis 643 

All 314 hybrids were sown in Haidian (Beijing) in June of 2018. When plants 644 

reached V7 stage, the decapitated juvenile internodes of three plants were bulked as one 645 

sample for each line. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, 646 

Germany), and RNA purity was checked using the kaiaoK5500 Spectrophotometer 647 

(Kaiao, Beijing, China). RNA integrity and concentration were assessed using the RNA 648 

Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, 649 

USA). mRNA from total RNA was purified using poly-T oligo-attached magnetic beads. 650 

Then, sequencing libraries were constructed using NEBNext® Ultra™ Directional 651 

RNA Library Prep Kit for Illumina (NEB, Ispawich, USA), and sequenced using the 652 

Illumina Novaseq system, producing 150 bp (pair-end) sequencing reads. More than 653 

10Gb of data were obtained for each library. 654 

To quantify gene expression, the raw reads of RNA-seq were firstly filtered by 655 
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removing adapter sequences, low-quality bases (quality score < 20), and short reads 656 

(length >= 30bp) with Trimmomatic-0.36 (Bolger et al., 2014). Secondly, the filtered 657 

reads were mapped to the maize reference genome (ARGv4) by STAR (v2.6) in two-658 

pass mode (Dobin et al., 2013), and the uniquely mapped reads were extracted for gene 659 

expression quantification. Then, the read counts of genes annotated in maize B73 660 

ARGv4 genome were calculated by HTseq-count with parameters of -s reverse --mode 661 

union (Anders et al., 2015). Next, DEseq2 was used to correct the library size and 662 

calculate normalized FPKM values of genes (Love et al., 2014). Finally, after filtering 663 

with the median of FPKM > 0 among the hybrid population, 28,706 filtered genes were 664 

obtained and their expressions were normalized with R qqnorm() function. PEER 665 

(Stegle et al., 2010) was used to estimate technical variation in expression profile and 666 

16 hidden confounding factors were detected. 667 

SNP calling with genomic re-sequencing data 668 

The public genome re-sequencing data for the parental lines (Gui et al., 2022) were 669 

exploited for SNP calling. The raw reads were filtered by removing adapter sequences, 670 

low-quality bases (quality score < 20), and short reads (length >= 30bp) with 671 

Trimmomatic-0.36 (Bolger et al., 2014). The processed reads were mapped to the maize 672 

reference genome (ARGv4) using BWA mem (Li, 2013) with default parameters. Only 673 

uniquely mapped reads were extracted for SNP calling, which was carried out following 674 

the GATK (v3.8.1) best-practice guidelines for variant calling (DePristo et al., 2011). 675 

In brief, the alignment files (BAM format) were sorted, duplicate reads were marked, 676 

and group information was added and indexed with Picard Tools 677 

(http://broadinstitute.github.io/picard). Next, IndelRealigner of GATK was used to 678 

realign reads containing indels, and BaseRecalibrator of GATK was performed for base 679 

recalibration with the SNPs of maize Hapmap v3.2.1 as knownSites (Bukowski et al., 680 

2018). Genomic variants were called using HaplotypeCaller with the parameters -681 

dontUseSoftClippedBases -stand_call_conf 20.0 -ERC GVCF -variant_index_type 682 

LINEAR. The joint genotyping of all inbred lines was performed with GenotypeGVCFs. 683 

Finally, raw SNPs were filtered with quality parameters set as QD >= 2.0, FS <= 60.0, 684 

and MQ >= 20.0. 685 

To prepare SNP markers for genetic analysis, SNPs that passed quality control 686 

were further filtered with the heterozygous rate <= 20% and missing rate <= 20% 687 

among the parent population. Then, Beagle was used to impute the filtered SNPs with 688 

Jo
urn

al 
Pre-

pro
of



23 
 

the major parameters set as window=50000 and overlap=10000 (Browning et al., 2018). 689 

The additive genotypes of the parent population were coded as 0,1,2, where 0 represents 690 

the major homozygous genotype, 1 for the heterozygous genotype, and 2 for the minor 691 

homozygous genotype. Owing to the limited sample size of the parental population, 692 

there was extensive long-distance LD among SNP loci. To remove such SNPs, we used 693 

the method proposed by (Seymour et al., 2016). In brief, in the additive genotype matrix, 694 

we regarded SNPs having the same genotypes across the whole population as one 695 

genotype combination, and found that there were 1,823,526 genotype combinations. 696 

The number of SNPs in these combinations ranged from 1 to 33,586. We retained the 697 

combinations with less than 50 SNPs, and their corresponding SNPs. In addition, SNPs 698 

showing perfect long-range LD across chromosomes were removed. Finally, 4,628,240 699 

SNPs were obtained for the parental population. The genotypes of hybrids were inferred 700 

based on the genotypes of their parents. 701 

The neighbour-joining (NJ) tree was constructed based on the distance matrix 702 

computed using the genotypic data. NJ tree construction was implemented using R 703 

package APE (Paradis et al., 2004). 704 

GWAS of hybrid performance and identification of QTL 705 

GWAS was implemented following a linear mixed model incorporating both additive 706 

and dominance effects (AD model). The AD model (Bonnafous et al., 2018; Ramstein 707 

et al., 2020) is: 708 

i ai i diy x z A D e  = + + + + +                         (3) 709 

where y is the BLUEs; µ is the intercept; ix
  and iz

  are the additive and dominance 710 

genotypes of the ith SNP; ai
 and di

 are the additive and dominance effects of the ith 711 

SNP, respectively; A is the random additive effect; 𝐷 is the random dominance effect. 712 

Let 2~ 0,  ( )a aA N K  , 2~ 0,  ( )d dD N K  , where aK   is the additive kinship matrix 713 

(VanRaden, 2008), and dK  the dominance kinship matrix (Vitezica et al., 2013). The 714 

additive genotypes were coded as stated above. For the dominance genotype matrix, 715 

the homozygous and heterozygous genotypes of each SNP were coded as 0 and 1, 716 

respectively. To reduce the computational load, the mixed model was approximately 717 

transformed into a simple linear regression model based on the population parameters 718 

previously determined (P3D) algorithm (Zhang et al., 2010). The significance of 719 

additive and dominance effects for each marker were determined with t-tests. A total of 720 
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2,324,652 SNPs, whose frequencies of each SNP genotype (two homozygous 721 

genotypes and a heterozygous genotype) were larger than 0.05, were used for 722 

association mapping 723 

The genome-wide significance threshold for the association analysis was 724 

determined based on the number of effective markers (Me). A total of 74,316 effective 725 

SNPs were identified using GEC (v0.2) (Li et al., 2012). To establish an optimal 726 

threshold, four approaches were compared: (1) a modified Bonferroni correction 727 

threshold of 1.34 × 10⁻⁵, determined as 1/Me, based on previous recommendations (Li 728 

et al., 2013a; Wen et al., 2014); (2) a Bonferroni correction threshold of 6.73 × 10⁻⁷, 729 

calculated as 0.05/Me; (3) a false discovery rate (FDR) threshold implemented using 730 

the p.adjust() function in R with FDR < 0.05; and (4) permutation tests (PT). For the 731 

PT threshold, the BLUE values for each trait were randomly shuffled 1,000 times and 732 

subjected to GWAS using the AD model. The P-value corresponding to a one-tailed 733 

probability of 0.01 was set as the empirical threshold. We compared the four methods 734 

and observed the following (Table S9): the second approach yielded zero dominance-735 

QTLs for EH and only a few additive-QTLs for both traits; the third approach resulted 736 

in zero additive-QTLs for PH and zero dominance-QTLs for EH; and the fourth 737 

approach identified more than 200 QTLs. Comparatively, the first approach better 738 

reflected the quantitative inheritance patterns of PH and EH. Therefore, we selected the 739 

first approach to determine the QTL significance threshold. 740 

The QTL for hybrid performance were identified with the following steps. Firstly, 741 

all significant SNPs with additive and dominance effects were extracted and clustered 742 

into intervals with a distance cut-off of 200 kb. Then, only intervals that spanned at 743 

least 3 significant SNPs were kept and treated as QTL. The lead SNPs in the 744 

interval/QTL were used to represent the QTL. The likelihood-ratio-based 2R  was 745 

adopted to estimate the PVEs by the lead SNPs following a mixed linear model, which 746 

contained both the additive and dominant kinship matrices (Sun et al., 2010). The model 747 

was fitted by GridLMM package (Runcie and Crawford, 2019). A ratio of dominance 748 

effect / additive effect (d/a) was used to indicate the degree of dominance for each QTL. 749 

The additive effect (a) is half of the difference of the average phenotypic values between 750 

the two homozygous genotypes. The dominant effect (d) is the phenotypic difference 751 

between the heterozygous genotypes and mid-parent values. The favorable and 752 

unfavorable alleles of the lead SNP for each QTL were defined as follows: the hybrids 753 

carrying homozygous favorable alleles should display higher average phenotypic 754 
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values than those carrying homozygous unfavorable alleles among the hybrid 755 

population. 756 

The favor score of each hybrid was calculated as the sum of numeric genotypes at 757 

all detected QTL. In brief, the genotypes of the lead SNPs in each QTL were firstly 758 

coded as numeric format based on their genetic effects. For additive-QTL, the 759 

genotypes of lead SNPs were coded as 1, 0, -1, where 1 represents the homozygous 760 

favorable genotype, 0 the heterozygous genotype, and -1 the homozygous unfavorable 761 

genotype. For dominance-QTL, the genotypes of lead SNPs were coded as 1, 0, where 762 

1 represents the heterozygous genotype, and 0 the homozygous genotype. Thus, the 763 

favor score indicated the cumulative effects of favorable genotypes of all detected QTL 764 

in each hybrid. 765 

eQTL and hotspot analysis 766 

eGWAS was performed with an AD model modified from formula (3). In this 767 

model, the 16 PEER factors were incorporated as fixed effects to correct the technical 768 

variation, and the significance of combined effect (additive and dominance effects) of 769 

each marker was tested with Wald test. To reduce the computational load of eQTL 770 

mapping, the redundant SNPs were removed through a genome-wide LD-based pruning 771 

(r2 ≥ 0.99) by PLINK with key parameters set as --indep-pairwise 100 5 0.99, 772 

producing 889,673 informative SNPs. The significance threshold (1.34E-5) 773 

corresponded to that of the GWAS analysis. 774 

For a specific gene, the eQTL were identified with the following steps: (1) the 775 

significant SNPs (eSNPs) within a distance of 10 kb were grouped into a candidate 776 

eQTL interval, and the candidate eQTL containing less than three eSNPs were removed. 777 

The lead SNPs were chosen to represent the candidate eQTL. (2) If multiple candidate 778 

eQTL showed strong LD (r2 > 0.1) with each other, then the less significant eQTL was 779 

dropped. The target genes of eQTL were referred as eGenes. The local- and distant-780 

eQTL were determined based on the relative distance between eQTL and the target 781 

genes with a distance cut-off of 200 kb. eQTL hotspots were identified with hot_scan 782 

software (Silva et al., 2014) by setting the window size as 10 kb, and the threshold of 783 

adjusted P-value < 0.01. 784 

IC modules and module-eQTL identification 785 

Independent component (IC) analysis was performed to obtain co-expression 786 
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modules using the package picaplot v0.99.7 (https://github.com/jinhyunju/picaplot) 787 

with fastICA algorithm by setting the key parameters as n_runs = 20, n_cores = 40, 788 

max_iter = 500. The optimal number of ICs was determined using a cut-off value of 789 

95% cumulative variance. Gene assignment to each module was determined using the 790 

R fdrtool package. Genes with adjusted P-values < 0.001 for false discovery rate (FDR) 791 

estimation of the source signal weights were added to the module. Finally, only ICs 792 

with assigned genes ≥ 10 were kept. 793 

meGWAS for the latent features of IC modules was performed with the same AD 794 

model as mentioned in eGWAS analysis. meQTL were identified with the same pipeline 795 

as adopted for the identification of eQTL. To check whether the eQTL were 796 

significantly enriched in 200 kb flanking regions of meQTL, a fisher exact test (Sun et 797 

al., 2023) was performed with four categories: (1) eGenes assigned to ICs are regulated 798 

by eQTL in the flanking regions of meQTL regulating the specific ICs, (2) eGenes not 799 

assigned to ICs are regulated by eQTL in the flanking regions of meQTL regulating the 800 

specific ICs, (3) genes assigned to ICs but not regulated by eQTL in the flanking regions 801 

of meQTL regulating the specific ICs, (4) and eGenes neither assigned to ICs nor 802 

regulated by eQTL in the flanking regions of meQTL regulating the specific ICs. 803 

Significant P-values (≤ 0.05) indicate that eQTL of more genes assigned to ICs then 804 

expected by chance are associated with the meQTL. 805 

GO functional enrichment analysis for the genes allocated to each IC was 806 

performed based on maize-GAMER annotation (Wimalanathan et al., 2018), and was 807 

implemented using Goatools (Klopfenstein et al., 2018) with a hypergeometric test 808 

(Bonferroni-correction P ≤ 0.05). 809 

Haplotype analysis for bZIP29 810 

Re-sequencing-based variations (SNPs and INDELs identified using GATK) 811 

located within the gene body and the 10 kb upstream region of bZIP29 were filtered 812 

based on quality and genotype frequency (frequencies of the three genotypes in the 813 

hybrid population > 0.05). These variations were then used in association analysis for 814 

PH and EH with the AD model. Significant trait-associated variations (P < 0.01) were 815 

clustered into genotype groups, which were analyzed using a one-way ANOVA model 816 

(trait ~ group, data) in R. The most significant genotype group was treated as the 817 

associated haplotype. The phenotypic and expression-level effects of the associated 818 

haplotype were further evaluated through pairwise comparison of means using Tukey’s 819 
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HSD test (adjusted P < 0.05), with only HapGs with frequencies exceeding 0.05 820 

included in the pairwise comparison. 821 

Construction and phenotypic investigation of transgenic lines, and expression 822 

quantification of bZIP29 with qRT-PCR 823 

The generation of bZIP29 CRISPR-Cas9 transgenic lines (DEL) and the bZIP29 824 

over-expression transgenic (OE) lines were described in a previous work (Yang et al., 825 

2022). Both DEL and OE lines were reliably used to compare the differences of seed 826 

development between transgenic lines and wildtype. DEL lines were generated through 827 

Agrobacterium tumefaciens-mediated transformation in the B104 inbred background. 828 

The obtained DEL plants were crossed and backcrossed to B104 to select the BC1 seeds 829 

that didn’t contain Cas9 construct. The selected BC1 plants were self-pollinated to 830 

obtain the wild-type and homozygous DEL lines. The full-length CDS of bZIP29 driven 831 

by the 27-kD γ-zein promoter was cloned into pTF102 plasmids, which were 832 

transformed to the Hi-II hybrid, and then backcrossed to B104 for more than four 833 

generations. The null segregants from the self-pollinated OE lines were used as wild 834 

type control. 835 

Phenotypes of transgenic lines were investigated in the summer of 2024 in Beijing, 836 

plant height and ear height of DEL, OE, WT, and their F1 lines were measured. The 837 

juvenile internodes of DEL, OE, WT, and their F1 lines at V7 stage were collected for 838 

expression quantification of bZIP29. Total RNA samples were extracted with FastPure 839 

Universal Plant Total RNA Isolation Kit (catalogue No. RC411, Vazyme, Nanjing, 840 

China). For each sample, 1 ng RNA was used for synthesis of the first-strand 841 

complementary DNAs (cDNAs) using the HiScript II Q RT SuperMix for qPCR 842 

(+gDNA wiper) (Vazyme, Nanjing, China). qRT-PCR was conducted with the Taq Pro 843 

Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) on a CFX-96 Real-time 844 

PCR platform (BIO-RAD, Hercules, USA). The ZmActin gene was used as internal 845 

reference (Zhang et al., 2020). The primer sequences used for qRT-PCR were listed in 846 

Table S10. 847 

tsCUT&Tag experiment and data analysis 848 

A tsCUT&Tag technology was employed to analyze the regulatory network of 849 

bZIP29 (Wu et al., 2022). The Hyperactive In-Situ ChIP Library Prep Kit for Illumina 850 

(pG-Tn5) kit (Vazyme TD901) was used for experimental operations. The transformed 851 
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protoplasts of B73 were observed by fluorescence microscope to detect the 852 

transformation efficiency. Selected samples with conversion efficiency >60% were 853 

used for subsequent tsCUT&Tag experiments. Two biological replicates were set for 854 

the constructed vector containing CDS of bZIP29. Cells were collected by low-speed 855 

centrifugation at 100 r/min for 2 min, and resuspended using 100 ml resuspension 856 

solution. After treating the resultant with ConA beads, incubation was performed with 857 

GFP antibody and the corresponding secondary antibody. pG-Tn5 Transposon was used 858 

to fragment the DNAs and insert adaptors. Finally, the fragmentated DNA was extracted 859 

for library construction. After quantifying by Qubit, the libraries were sequenced with 860 

pair-end 150 bp in Illumina Hiseq X-Ten platform. Protoplasts transformed with the 861 

pM999-GFP vector were used as control. The cleaned reads were mapped to the B73 862 

reference genome (AGPv4) using bowtie2 (Langmead and Salzberg, 2012). The high 863 

confidence peaks (Ppeak < 0.0001) were scanned across the whole genome with Macs 864 

(Feng et al., 2012). The distribution of peaks in the whole genome was analyzed with 865 

ChIPseeker in R (Yu et al., 2015). If a peak was located within 3 KB from TSS of the 866 

gene, the gene was considered to be a target. 867 
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 1199 
Figure legends: 1200 
Fig. 1 Phenotypic and genetic analysis of PH and EH in the hybrid population. (A) The distribution 1201 
of hybrid performance against the mid-parent values for PH and EH. The colors of points indicated 1202 
the tested traits. The red dashed line indicated the diagonal line y = x. (B) 𝐻2 estimates for hybrid 1203 
performance and MPH, respectively. (C) Overlaps of different types of QTL. PH_Add and PH_Dom 1204 
indicated additive-QTL and dominance-QTL for PH, respectively. EH_Add and EH_Dom indicated 1205 
additive-QTL and dominance-QTL for EH, respectively. (D) PVEs of the lead SNPs of different 1206 
types of QTL. Statistical comparisons were performed using two-sided Wilcoxon rank-sum tests.  1207 
(E) and (F) Correlation between favor scores and hybrid traits. 1208 
 1209 
Fig. 2 Identification of eQTL and their genetic characteristics. (A) Proportions of distant- and local-1210 
eQTL. (B) Proportions of eGenes regulated by distant-eQTL (Distant), local-eQTL (Local), and 1211 
both (Distant + Local). (C) Frequencies of distances between eQTL and their regulating eGenes. (D) 1212 
Frequencies of the number of eQTL that regulate eGenes. (E) Comparison of expression variances 1213 
explained (R2

LR) by lead SNPs of distant- and local-eQTL. Statistical significance was assessed 1214 
using a two-sided Wilcoxon rank-sum test. *, P < 0.05; **, P < 0.01. (F) Distribution of QTL, eQTL 1215 
and eQTL hotspots in the maize genome, shown as five circles: [I] The ten chromosomes; [II] 1216 
Heatmap showing the density of eQTL along the genome in 200-kb bins; [III] Barplot showing the 1217 
distribution of eQTL hotspots with the height of bars representing the number of eGenes regulated 1218 
by eQTL hotspots; [IV] and [V] Distribution of QTL for PH and EH, respectively. The blue and red 1219 
bars indicated additive- and dominance-QTL, respectively. The red, blue and purple linked lines 1220 
within the circle indicated the associations of three representative eQTL hotspots (C4_Hot21, 1221 
C7_Hot08, and C10_Hot26, respectively) with their downstream eGenes. (G) Regulatory 1222 
relationship of the three representative eQTL hotspots and their downstream eGenes. The genes 1223 
potentially related to plant growth and development were labeled with their abbreviated names. 1224 
 1225 
Fig. 3 Co-expression modules and meGWAS analysis. (A) x-axis and y-axis indicated the 1226 
correlation coefficients (r) between latent features of ICs and PH, and between latent features of ICs 1227 
and EH, respectively. The colors of points indicated the correlations between latent features of ICs 1228 
and the tested traits. NoCor indicated non-significant correlations between latent features of ICs and 1229 
either trait. The sizes of points indicate the number of genes assigned to the ICs. (B-C) GO terms 1230 
significantly enriched for the top ten positively correlated modules and top five negatively correlated 1231 
modules for PH (B) and EH (C), respectively. Line color indicated correlations between latent 1232 
features and the tested traits. The colored GO IDs indicated functional categories of GO terms. (D) 1233 
Distribution of meQTL for trait-correlated ICs. The colors of points indicated the -log10(P-values) 1234 
of the lead SNPs in meQTL. The colors of labels on y-axis indicated that there were significant 1235 
correlations between latent features of ICs and the tested traits. The colors of bars in the two top 1236 
rows indicated the additive- (blue) and dominance-QTL (red) for PH and EH, respectively. The 1237 
shapes of points indicated the levels of P-values for the enrichment analysis with Fisher’s exact tests 1238 
(FET, see “Materials and methods”). (E) and (F) Venn diagrams showing the overlaps of QTL, eQTL 1239 
hotspots, and meQTL whose flanking regions were significantly enriched for eQTL regulating 1240 

Jo
urn

al 
Pre-

pro
of



35 
 

eGenes assigned to relevant ICs (as detected by FET analysis). A distance cut-off of 10 kb was 1241 
adopted for identifying co-localization of meQTL with QTL and eQTL. 104 and 101 meQTL were 1242 
associated with PH-correlated ICs (E) and EH-correlated ICs (F), respectively. 1243 

 1244 
Fig. 4 Association mapping and expression analysis revealed bZIP29 as candidate gene. (A) Local 1245 
Manhattan plots showing GWAS signals (upper panel), meGWAS signals (middle panels), and 1246 
eGenes regulated by the hotspot (C1_Hot60*, lower panel). (B) LD structure of the QTL. (C) 1247 
Heatmap showing correlations between the tested traits or the expression of bZIP29 and the 1248 
expressions of 15 eGenes plus bZIP29. (D-E) Hybrid performance, MPH (D), and bZIP29 1249 
expression (E) in hybrids carrying different genotypes at the peak SNP (C1M296443013) of the 1250 
QTL. We used Student's t-test to compare the difference among genotype groups. *, P < 0.05; **, P 1251 
< 0.01. The code for performing Student's t-test was available at https://github.com/Comp-Bio-1252 
ZhangJ/Population-analysis-of-hybrid-maize. The left, middle, and right genotypes on the x-axis of 1253 
each panels indicated the homozygous favorable genotype, the heterozygous genotype, and 1254 
homozygous unfavorable genotype, respectively. 1255 

 1256 
Fig. 5 Functional characterization of the dominance effects of bZIP29 on PH and EH. (A) 1257 
Comparison of expression levels of bZIP29 in WT lines, DEL lines (DEL1 and DEL2), and DEL-1258 
derived F1 lines (DEL1F1 and DEL2F1). (B) Comparison of expression levels of bZIP29 in WT lines, 1259 
OE lines (OE1 and OE2), and OE-derived F1 lines (OE1F1 and OE2F1). The expression levels of 1260 
bZIP29 in juvenile internodes of the indicated lines were measured by qPCR. (C) Comparison of 1261 
PH and EH between WT lines, DEL lines, and DEL-derived F1 lines. The number of plants for 1262 
DEL1, DEL1F1, WT, DEL2, and DEL2F1 were 23, 36, 61, 31, and 31, respectively. (D) Phenotypes 1263 
of WT, DEL, and DEL-derived F1 lines several days after flowering. (E) Comparison of PH and EH 1264 
in WT lines, OE lines, and OE-derived F1 lines. The number of OE1, OE1F1, WT, OE2, and OE2F1 1265 
were 15, 37, 15, 39, and 31, respectively. (F) Phenotypes of OE, WT and OE-derived F1 lines several 1266 
days after flowering. Statistical significance in panels A–C and E was assessed using Student's t-1267 
test. *, P < 0.05; **, P < 0.01. (G) Heatmap showing the quality of the two replicates of tsCUT&Tag 1268 
libraries. (H) and (I) tsCUT&Tag read counts across the genome sequences of RPS17 and FLS1, 1269 
respectively. (J) Regulatory network featuring bZIP29. Top node indicated bZIP29. Orange nodes 1270 
indicated the eGenes regulated by the eQTL hotspots (C1_Hot60*). Purple and green nodes 1271 
indicated the co-expressed genes assigned in modules IC176 and IC181, respectively. Red linked 1272 
lines indicated the genes regulated by bZIP29 were supported by both evidences of genetic analysis 1273 
(eQTL or meQTL analysis) and tsCUT&Tag assay. Blue nodes indicated the other target genes 1274 
identified by tsCUT&Tag assay. 1275 

 1276 
Fig. 6 Comparison of bZIP29-centered co-expression networks between the four hybrid sub-1277 
populations and the parental population. (A) The Venn diagram displays the genes co-expressed 1278 
with bZIP29 in the four hybrid sub-populations and the parental population. The co-expressed genes 1279 
of bZIP29 were identified based on Pearson correlation (P < 0.001) in the four hybrid sub-1280 
populations and parental population. (B) GO enrichment of genes co-expressed with bZIP29 in the 1281 
five populations. The colors of labels on y-axis indicated the significantly-enriched GO terms for 1282 
genes co-expressed with bZIP29 in the five populations. The colors and sizes of the points indicate 1283 
the significance levels and the number of co-expressed genes assigned to the enriched GO terms. 1284 
(C) Co-expression networks of bZIP29 in the four hybrid sub-populations (M01, M02, M03 and 1285 
M04), as well as in the parental population. The colors of nodes represent the functional categories 1286 
of the co-expressed genes based on their GO annotation. The co-expression networks were displayed 1287 
with Gephi. The numbers under the labels of networks indicated the numbers of hybrids or parents 1288 
carrying different genotypes at the peak SNP (C1M296443013) of the QTL colocalized with bZIP29. 1289 
The left, middle, and right numbers represent the counts of lines carrying the homozygous favorable 1290 
alleles, the heterozygous genotype, and homozygous unfavorable alleles, respectively. 1291 
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