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A B S T R A C T

Multi-environment trials (METs) are widely used in soybean breeding to evaluate soybean cultivars’ adaptability
and performance in specific geographic regions. However, METs’ reliability is affected by spatial and temporal
variation in testing environments, requiring further knowledge to correct such changes. To improve METs’ ac-
curacy, the growth of 1303 soybean cultivars was accurately estimated by accounting for climatic effects and
spatial heterogeneity using a linear mixed-effect model and a field spatial-correction model, respectively. The
METs across 10 sites varied in climate and planting dates, spanning N16◦41′52″ in latitude. A soybean growth
and development monitoring algorithm was proposed based on the photothermal accumulation area (AUCpt)
rather than using calendar dates to reduce the impact of planting dates variability and climate factors. The AUCpt
correlates strongly with latitude of the above trial sites (r > 0.77). The proposed merit-based integrated filter
decreases the influence of noise on photosynthetic vegetation (fPV) and non-photosynthetic vegetation (fNPV)
more effectively than S-G filter and locally estimated scatterplot smoothing. The field spatial-correction model
helped account for spatial heterogeneity with a better estimation accuracy (R2 ≥ 0.62, RMSE≤0.17). Broad-sense
heritability (H2) with the field spatial-correction model outperformed the models without the model by an
average of 52 % across the entire aerial surveys. Model transferability was evaluated across Sanya and Nanchang.
Rescaled shape models in Sanya (R2 = 0.97) were consistent with the growth curve in Nanchang (R2 = 0.89).
Finally, the methodology’s precision estimations of crop genotypes’ growth dynamics under differing
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environments displayed potential applications in precision agriculture and selecting high-yielding and stable
soybean germplasm resources in METs.

1. Introduction

Soybean (Glycine max (L.) Merr.) is one of the most economically
important leguminous seed crops (Shen et al., 2018; Liu et al., 2020; Lu
et al., 2020). Multi-environment trials (METs) involve collecting germ-
plasm resources that naturally occur in various geographical regions and
cultivating them in one or more locations to compare their growth,
morphology, and physiological characteristics (Rotili et al., 2020; Ortiz
et al., 2023). These trials can aid in selecting the best-suited germplasm
for specific regions in soybean production, as well as provide data and
raw materials for genetic improvement by selecting high-yielding and
stable germplasm resources (Jarquin et al., 2020). Nonetheless, the
dependability of METs data could be influenced by fluctuations in
testing environments over space and time, and there is presently inad-
equate comprehension regarding how to account for such variations.
Temperature and photoperiod are the two dominant climatic factors
that influence the phenotype traits of soybean growth dynamics (Zeng
et al., 2016). Soybean growth and development was directly expressed
on relevant thermal and light indices scale, rather than using calendar
dates, reduce the impact of planting dates variability and climate effect,
and facilitates effective evaluation of soybean growth across multiple
environment test sites.

Precise, relevant, and cost-effective phenotypic data is a precondi-
tion for breeders to increase selection intensity and shorten the breeding
cycle (Moreira et al., 2019). Recent advances in sensors and image-
progressing algorithms have provided new opportunities to bridge the
gap between genotypes and phenotypes (Zeng et al., 2020; Li et al.,
2022a). Unmanned aircraft vehicle (UAV), a high-throughput pheno-
typing platform, can be used to quantitatively or qualitatively measure
crop phenotyping traits, including plant height (Roth et al., 2022), yield
traits (Cai et al., 2019; Wan et al., 2020), senescence rates (Hassan et al.,
2021), crop aboveground biomass (Che et al., 2022), heading date (Lyu
et al., 2023) and maturity date (Zhou et al., 2019) with a non-intrusive
method (Koh et al., 2022; Li et al., 2022c). However, when monitoring
crop growth dynamics over a prolonged period, the estimation accuracy
of UAV-derived phenotypic traits may be negatively impacted by
observation errors and noise caused primarily by atmospheric constit-
uents, bi-directional reflectance distribution functions, and mixed-pixel
effects. As a result, such factors may cause unstable fluctuations and
anomalies in the time series of phenotypic traits, resulting in adversely
affecting the long-term crop detection results.

Spatial heterogeneity is prevalent in a large number of genotypes
breeding trials, thereby decreasing the repeatability and precision of the
evaluated phenotypic traits (Yu et al., 2016; Moreira et al., 2019; Ber-
nardeli et al., 2021). Spatial heterogeneity usually comes from agricul-
ture management and variability in soil and field topography.
Characterization of field random variability at the plot level and
removal of systematic errors caused by sowing are critical when esti-
mating phenotyping traits and genotypic effects (Robbins et al., 2012;
Lee et al., 2013; Elias et al., 2018). Recently, Lado et al. (2013) and
Rodríguez-Álvarez et al. (2018) introduced a field spatial-correction
model that improves the adjustment in labor-intensive ground-
measured amino nitrogen content and grain yield and increments the
accuracy of measurements. The transposition of this field spatial-
correction model to UAV observations would be very attractive, due to
UAV’ advantages of high throughput, flexibility, non-destructiveness,
and non-invasiveness.

The main aim of breeding experiments is to estimate the breeding
value that is stably inherited by the next generation for targeted geno-
types from accurate phenotypic data. In standard genetic models, the
observed phenotypic data p is the sum of an unobservable genotypic

value g and amodel residual ε; that is, p= g+ ε. The best linear unbiased
predictors (BLUP) (Henderson 1973) of breeding values are well-
established methodologies in crop breeding (Lado et al., 2013), with
the advantage of shrinking estimators towards the average performance
of pure lines, reducing the variance, and increasing the predictive ac-
curacy (Montesinos-López et al., 2016; Kaler et al., 2022). Broad-sense
heritability (H2) refers to the percentage of phenotypic total variance
that is attributable to genetic variation due to substantial variability
among genotypes. H2 is associated with the coefficient of determination
(R2) obtained from standard genetic models and is also related to the
squared correlation between predicted phenotypic values and genotypic
values. In plant breeding, H2 can be incorporated into the genetic gain
(ΔG) equation to predict response to selection or used as a descriptive
measure to determine the validity and accuracy of cultivar trial
outcomes.

Based on the analysis above, our objectives in this study are (1) to
analyze the relationship between accumulated photothermal areas
(AUCpt) of different soybean cultivars and latitude from emergence date
(ED) to maturity date (MD); (2) to compare the ability to de-noise and
rebuild cultivar shape models to obtain time-series phenotypic data with
S-G filtering, LOESS, and the proposed merit-based integrated filter; (3)
to investigate the adaptation of spatial heterogeneity correction using
the field spatial correction model and UAV RGB images; and (4) to use
BLUP to develop models of photosynthetic vegetation and non-
photosynthetic vegetation and verify the environmental portability of
soybean cultivar growth curves. Our goal in this study is to present a
strategy for obtaining more accurate time-series growth curves of soy-
bean cultivars by minimizing the effects of climate factors and field
spatial variation.

2. Materials and methods

2.1. Study layout

Field experiments were carried out in Sanya city
(N18◦9′34″–18◦37′30″, E108◦56′30″–109◦48′28″) in Hainan province and
Nanchang city (N28◦9′38″–29◦7′30″, E115◦26′6″–116◦33′37″) in Jiangxi
province, China. A panel of 350 soybean cultivars was selected from
2214 soybean accessions (Li et al., 2022a; Li et al., 2022b) from around
the world presenting a broad genetic diversity (Fig. 1c) and planted at
Sanya on December 3, 2020. The site experiment used a randomized
block design with three plot replications. Each soybean accession was
planted in a microplot of 1 m× 0.65 mwith two rows and 10 cm spacing
between the seedlings in each row. The 1303 soybean cultivars were
sown and grown in Nanchang on July 15, 2020, of which 350 cultivars
are the same as those planted in Sanya. Each soybean accession was
planted in a 1.8 m × 0.8 m microplot with two rows and 10 cm spacing
between seedlings in each row (Fig. 1b). The UAV-derived traits were
obtained at 18 time points from December 23, 2020 to February 27,
2021 in Sanya and at 17 time points from August 1 to September 22,
2020 in Nanchang.

The emergence date (ED), flowering date (FD) andmaturity date (MD)
were manually measured in Nanchang, Harbin (N44◦3′36″–46◦40′21″,
E125◦40′47″–130◦14′1″), Gongzhuling (N43◦11′31″–44◦16′34″, E124◦02
′08″–125◦18′18″), Tonghua (N40◦51′51″–43◦1′4″, E125◦15′24″–126◦
44′41″), Shijiazhuang (N37◦26′12″–38◦45′49″, E113◦31′1″–115◦28′39″),
Liaocheng (N35◦46′48″–37◦1′54″, E115◦16′36″–116◦32′39″), Xuzhou
(N33◦43′5″–34◦58′33″, E116◦21′19″–118◦40′21″), Nanjing (N31◦13′50″
–32◦36′44″, E118◦21′14″–119◦14′12″), Hefei (N30◦57′10″–32◦32′28″,
E116◦40′58″–117◦57′38″), and Wuhan (N29◦58′19″–31◦21′46″, E113◦41′
48″–115◦4′37″) in 2018–2020. The same soybean cultivars as planted in

Y. Che et al.



Computers and Electronics in Agriculture 225 (2024) 109313

3

Nanchang were sown at nine other experimental sites, with the same
planting strategy as in Nanchang. The ED corresponded to the emergence
of seedling cotyledons at least 50 % of soybean in a plot. The FD corre-
sponded to the flower of at least 50 % of soybean in a plot. The MD was
when approximately 95 % of soybean pods achieved mature pod color.

2.2. UAV image acquisition and preprocessing

Aerial surveys were conducted under clear sky conditions from 10:00
to 14:00 local time using a Phantom 4Multispectral Platform integrating
an RGB sensor in Nanchang and a DJI Matrice 600 Hexacopter Platform
integrating a Sony ILCE-7M2 RGB sensor in Sanya (Fig. 1a). The mission
was planned at a flight height of 12 and 17 m above the ground in
Nanchang and Sanya, respectively, with Ground Sampling Distances
(GSD) of 0.58 cm and 0.47 cm. The trajectory overlap was 75 %, and the
side overlaps were 60 % and 75 %, respectively, as described by Li et al.
(2022a).

The image preprocessing was implemented by Agisoft metashape
software Professional Edition (1.8.2, Formerly PhotoScan, Agisoft LLC,
Russia) and Esri ArcGIS (10.7, ESRI, United States). The photogram-
metric processes contained four steps: (1) the key points of UAV images
were detected by applying the Scale Invariant Feature Transform (SIFT;
Lowe, 2004) algorithm and the geometrically keypoint correspondences
were filtered using the Random Sample Consensus (RANSAC; Fischler
and Bolles, 1987) method; (2) point clouds were generated and geore-
ferenced using the Structure From Motion- Multi View Stereo algorithm

(SFM-MVS; Smith et al., 2016); (3) orthomosaic map generation
required the creation of a surface mesh from the point cloud; (4) all
orthomosaic maps were georeferenced using the extracted ground con-
trol points. Microplots were segmented from orthomosaic maps ac-
cording to their ground control point position in the experimental design
layout (Fig. 1b).

2.3. Development of phenological models for soybean cultivars

Fig. 2 describes the development scheme for soybean cultivar
phenology models for UAV RGB images. This study uses as input vari-
ables to construct phenology models the ED andMD of soybean cultivars
from ten environments in 2018–2020, weather information, and UAV
datasets from Sanya and Nanchang. Five specific steps were involved:
(1) calculate AUCpt using recorded temperature, sunrise, and sunset
during ED-MD; (2) vegetation can be classified as photosynthetic and
non-photosynthetic using a vegetation classification model; (3) de-noise
and rebuild cultivar shape models for time-series phenotypic data with
S-G filtering, LOESS, and the proposed merit-based integrated filter; (4)
investigate the adaptation of spatial heterogeneity correction using the
field spatial correction model and UAV RGB images; (5) determine
models for the BLUP of photosynthetic vegetation and non-
photosynthetic vegetation and verify the environmental portability of
soybean cultivar growth curves.

Fig. 1. Flowchart of the development and validation of phenological models for soybean cultivar time-series with AUCpt. (a) UAV images acquisition. (b) Study
layout in Nanchang and Sanya. (c) Phenotypic variation of flowering date and maturity date of soybean cultivars.
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2.3.1. Collection of meteorological data
As irrigation was implemented in both sites to alleviate water stress,

the influence of precipitation was not taken into account in this study.
The environmental factors considered included temperature and
photoperiod. Air temperature was recorded every three hours by the
ground weather station nearest to the 11 sites listed above. Data were
downloaded from the NOAA’s National Centers for Environmental In-
formation (NCEI, https://www.ncei.noaa.gov/) and calibrated using the
recorded values of the above four sites collected by field weather sta-
tions of the Chinese Academy of Agricultural Sciences (CAAS; R2= 0.99,
Fig. S1).

Calculation of photothermal accumulation area (AUCpt) consists of
four steps: (1) fitting daily temperature curves to a double logistic
function; (2) calculating sunrise and sunset of the above 11 sites using
the NOAA Sunrise/Sunset and solar position calculators with equations
from astronomical algorithms (Meeus 1998); (3) calculating daily pho-
tothermal values based on the area under daily temperature curves be-
tween sunrise and sunset; (4) obtaining AUCpt by summing the daily
photothermal values. The relationship between latitude and AUCpt from
ED to MD was analyzed by using monotonically increasing functions
including linear (y = ax + b) and power [y = a (x + b)3] functions.

2.3.2. Photosynthetic and non-photosynthetic vegetation classification
model

Vegetation can be classified as photosynthetic (green leaves) and
non-photosynthetic (i.e., senescence leaves, litter, and wood) by using a
vegetation classification model constructed by the decision-tree-based
segmentation model with two steps. The bounding boxes of photosyn-
thetic vegetation (PV; binary value = 1), non-photosynthetic vegetation
(NPV; binary value = 2), and bare soil (BS; binary value = 0) from 3500
selected images from different growth stage were first drawn by using
the graphical image annotation tool LabelImg (https://github.com/h
eartexlabs/labelImg). The color features of annotated images
including R, G, B, H, S, V, L, a, b from the color spaces of RGB, HSV, and
CIELAB were divided randomly into the training and testing dataset
according to the ratio 7:3. Calculating feature importance in the

decision-tree-based segmentation model involves two steps: (1) calcu-
late the importance for each node; and (2) calculate the importance for
each feature by applying node importance splitting on that feature. The
percentage of PV and NPV pixels in each microplot image was defined as
the fraction fPV and fNPV of photosynthetic vegetation and non-
photosynthetic vegetation, respectively.

2.3.3. Merit-based integrated filter
Many abnormally high values and noise artifacts in the fPV and fNPV

time series caused by atmospheric variability, the bi-directional reflec-
tance distribution function, and the mixed-pixel effects were first
smoothed by using a S-G filter (Savitzky and Golay 1964), LOESS
(Cleveland 1979), and the proposed merit-based integrated filter. Time
series data (t, yt) were smoothed based on S-G filtering by applying an
unweighted linear least square fitting to a set of (2 m + 1) adjacent data
points with a Kth polynomial, which can increase the precision of the
data without distorting the signal tendency. This work found that third-
degree polynomials in the S-G filter produce better denoising than other
low-degree polynomials. The LOESS employed locally weighted linear
quadratic regressions to smooth data after computing the weight for
each point within the span. The least squares criterion was modified by
multiplication of a nonnegative weight factorwi by the squared error at ti
within the span. Data points outside the span have zero weight. In this
study, the proposed merit-based integrated filter consists of three steps
(Fig. 3): (1) calculating the absolute difference between the observed
time-series data and the value estimated by LOESS; (2) removing the
outliers by comparing absolute differences with the triple median ab-
solute deviation; (3) combining the averaged estimation from S-G and
LOESS. By calculating the Sum of Squared Errors (SSE) between the
fitted curve and the time series, it was found that the SSE was minimized
when (2 m + 1), Kth, and span were set to 5, 3, and 0.3, respectively.

2.3.4. Spatial heterogeneity correction model
The spatial heterogeneity of fPV and fNPV caused by the different

micro-environments between plots at each observation was corrected by
using two-dimensional P-splines (Rodríguez-Álvarez et al., 2018). A

Fig. 2. Flowchart of the development and validation of phenological models for soybean cultivar time-series with AUCpt.
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smooth bivariate surface f(ri,ci) was firstly modelled using a simplified
model (Eqn.1). The P-spline approach is utilized to model the smooth
bivariate function as a tensor product of B-spline bases (Dierckx, 1995).
To avoid overfitting, difference penalties are added along the rows and
columns, and the 2D P-spline model (Eqn.4) is estimated through the
minimization of a penalized least squares objective function (Eilers and
Marx, 2003).

yi = f(ri, ci)+ εi,withε N(0, σ2) (1)

y = Bα+ ε,withε N(0, σ2In) (2)

S* = ‖y − Bα‖2 +αtPα (3)

where ri and ci denote the row and columns (i = 1,2,…,n). B represent B-
spline bases and α is a vector of unknown regression coefficients. P is the
penalty matrix and ε is the error.

A more complex model was developed to account for genetic varia-
tion, row × column effects, sowing and duplication effects in the field
experiment consisting of three duplications, 18 rows × 70 columns, and
350 genotypes. Our model included random factors for rows [cr ~ N
(0,σ2I18)], columns [cc ~ N(0,σ2I70)], duplications [cd ~ N(0,σ2I3)], and
soybean cultivars [cs ~ N(0,σ2I350)]. For each trait (fPV and fNPV), the
following model was applied to estimate fixed and random effect co-
efficients and variance components in mixed-effect models, by maxi-
mizing the REML log-likelihood function. The other linear mixed-effect
model without P splines was constructed by using only duplications [cd
~ N(0,σ2I3)] and soybean cultivars [cs ~ N(0,σ2I350)] as random factors
based on the maximum likelihood or restricted maximum likelihood
estimate methods (Bates et al., 2015).

yp = f(r, c)+Zscs +Zrcr +Zccc +Zdcd + ε,withε N
(
0, σ2

)
(4)

ym = Zscs +Zdcd + ε,withε N
(
0, σ2

)
(5)

where Zs, Zr, Zc, and Zd represent column-partitioned matrices associ-
ated with soybean cultivars, rows, columns, and duplications, respec-
tively. The smooth bivariate function f(r,c) was estimated by the tensor
product of B-spline bases using the row and column as covariates (for
details see Rodríguez-Álvarez et al., 2018). The quantity ε is the random
error vector.

The transmissible or “additive” portion was due to the effects of in-
dividual alleles passed on by a parent to its offspring. The breeding
values as the expected performance of offspring are predicted by using
the BLUP (Henderson 1973), which is a well-established methodology in
crop breeding, with the advantage that estimators shrink towards the
average performance of pure lines, thereby reducing its variance and
increasing its predictive accuracy (Montesinos-López et al., 2016; Kaler
et al., 2022).

2.3.5. Shape model of soybean cultivars and space–time portability
The fPV and fNPV time series in Sanya combined with AUCpt were fit

by using the double logistic function (Eqn.6) and the S-curve (Eqn.7),
respectively:

fd(t, p) = cmin +(cmax − cmin)

•

[(
1

1+ p2•e(tg − t)•kg

)p1

-
(

1
1+ p4•e(ts − t)•ks

)p3
]

(6)

fs(t, p) = cmin +
cmax − cmin

(
1+ p2•e(tg − t)•kg

)p1 (7)

The model parameters (Fig. 4a) include the minimum (cmin) and
maximum (cmax), the inflection points kg and ks, the time reach of the

Fig. 3. Flowchart of proposed merit-based integrated filter. Note: fPV and fNPV are defined as the fractions of photosynthetic vegetation and non-photosynthetic
vegetation. (t,yt), [t, fs(t)], [t, fl(t)], respectively, and represent measured time series, filtered time series by S-G, and smoothed time series by LOESS. fl(t)’ is the
time series after removing the smooth outliers of LOESS, where k, a, ti, ε, wi, d(t) respectively represents a Kth-degree polynomial, a coefficient, the nearest neighbour
of t, which is defined within the span, the residual, a nonnegative weight factor, and the maximum time between t and ti.

Y. Che et al.
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inflection points (tg and ts), and the rates near the lower (p1 and p4) and
upper (p2 and p3) asymptotes, which were used to fit the growth and
development of soybean cultivars.

The model of the shape of the time-series growth curve f(t) for Sanya
represents the growth curve for the target soybean cultivars, where t is
AUCpt and f(t) is a function of the time-series of fPV and fNPV. The growth
curve g(t’) in Nanchang is transformed from f(t) by stretching, com-
pressing, and translating in the t and y directions by using xscale, yscale,
and tshift, respectively, as follows:

g(tʹ) = yscale× f(xscale× (t + tshift) ) (8)

Scaled models of the x axis were constructed by using six points
(Fig. 4b–c), including the inflection point (t2), intersections (t1 and t3) of
the line through the inflection point, the time-series curves, and the peak
(t4 and t5) and valley (t6) positions of the second derivative; that is, t’ =
xscale × (t + tshift). These six points were acquired by the first deriv-
ative, second derivative, and intersection points, which gave unique
values that better describe the shape of the time-series curves. The yscale
was calculated by using the lower and upper asymptotes; that is g(t’) =
yscale × f(t’).

2.4. Statistical analysis and heritability estimates

The coefficient of determination R2 and root mean square error
(RMSE) were used to evaluate the degree of coincidence between the
observed and estimated phenotyping BLUPs. The Pearson correlation
coefficient, mean, maximum, minimum, standard deviation, and coef-
ficient of variation were used to evaluate correlations between latitude
and AUCpt. The accuracy, precision, recall, F1-score, receiver operating
characteristic (ROC) and area under ROC curve (AUC) served to eval-
uate the degree to which the measured value conformed to the estimated
value and the generalizability of the vegetation classification model. The
normal distribution statistics of residuals between observed and esti-
mated values were analyzed to evaluate the repeatability and stability of
the P-splines method.

The homogeneity of variance across the testing environments
allowed for combined analyses of variance (ANOVA). The ANOVA’s
expected mean squares enabled estimation of variance components for
both the testing germplasm and environments. Broad-sense heritability
(H2) based on plot means was determined as Eqn.(9).

H2 =
σ2G

σ2G + σ2GS/S+ σ2ε/r
(9)

Where, σ2G, σ2GS and σ2ε were the genetic variance, the variance
component for G by E and the residual variance, respectively. UAV data
were collected for 350 soybean cultivars at two sites (S), Sanya and
Nanchang, with three replications (r).

3. RESULTS

3.1. Relationships of FD and MD with temperature and latitude

In this study, the FD and MD of soybean cultivars was calculated
from ten experimental sites with variability in climate and planting
dates, spanning N16◦41′52″ in latitude. Boxplots of FD andMD data from
ten locations were arranged in parallel, clearly revealing the median,
range, outliers, and distribution of each dataset (Fig. 5a–b). The FD and
MD for Harbin, Gongzhuling, and Tongliao were higher than those in
other sites, while FD and MD were shortest in Wuhan and Nanchang.
The wide interquartile ranges of FD and MD indicated that the soybean
materials present a broad genetic diversity. The FD and MD of soybean
cultivars correlates highly with the temperature (r = -0.672 & − 0.775,
Fig. 5c). Their correlation with temperature was negative, indicating
that the AUCpt of soybean cultivars decreases with temperature.

The AUCpt models were built from the relationships between latitude
and AUCpt from ED to MD using linear (y = ax + b) and power [y = a (x
+ b)3] functions. The AUCpt from ED to MD produces the most accurate
estimates when using a power function with R2= 0.77–0.95, SD=0.044,
CV=5.06 % (Fig. 5d), which is more accurate than the model con-
structed by the linear function (R2 = 0.76–0.94, SD=0.045, CV=5.25
%).

3.2. Photosynthetic and non-photosynthetic vegetation classification

The classification accuracy was evaluated over the training and
testing datasets. The testing dataset only slightly decreases as compared
with the training dataset. The results indicate that the vegetation clas-
sification model is robust (Fig. 6a). The classification model is good for
the PV and NPV of soybeans, with an accuracy of 0.984 and a ROC of
0.978. The diagonal elements of the confusion matrix list the correctly
classified counts in image pixels of the training and testing datasets for
NPV, PV, and BS, which are much greater than the confusion counts
(Fig. 6b). The results show that the vegetation classification model is a
well-functioning classifier (Fig. 6b).

The results demonstrate that the parameters a,H, and b from the HSV
and CIELAB color models of annotated images are important color fea-
tures for classifying PV and NPV of soybean (Fig. 6c). The parameters a,
H, and b describe the color transformation process. The parameter a
represents the color change from green to red, b represents the color
change from blue to yellow, and H is the hue. These are useful not only
because the scheme is more intuitive than raw RGB values but also
because the conversions to and from RGB are extremely fast to compute.

3.3. Comparison of three curve-filtering methods

To denoise and rebuild the time series fPV and fNPV, we apply and

Fig. 4. Visualization of parameters for the double logistic function and scaled model. (a) Including minimum (cmin) and maximum (cmax), the inflection points (kg
and ks), the time reach the inflection points (tg and ts), and the rates near the lower (p1 and p4) and upper (p2 and p3) asymptotes. Scaled model of x axis constructed
by using six points derived from (b) first derivative and (c) second derivative.
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compare the S-G filter and LOESS and propose a merit-based integrated
filter (Fig. 7). In the time-series fPV, LOESS proves to be a better method
to reduce contamination compared with the other methods (Fig. S2).
However, the S-G filter works better than LOESS to preserve the width
and height of peaks in the waveform, and the performance of LOESS
decreases for the time-series fNPV (Fig. S3). The proposed merit-based
integrated filter combines the virtues of the other two methods and re-
sists their disadvantages, so it works better to minimize the influence of
noise on time-series fPV and fNPV.

3.4. Correcting for spatial heterogeneity in plant breeding experiments
with P splines

The two-dimensional smooth surfaces of each time-point fPV and fNPV
datasets were modelled using P splines to estimate spatial trends across
plots. Here, correcting for spatial heterogeneity in time-series fPV is
considered as an example in Fig. S4. The spatial trend of the raw data is
recovered by using P splines (Fig. S4a–b). The raw data are consistent
with the estimated results (Fig. S4a) with residuals showing a normal
distribution with μ and σ values close to zero (Fig. S4c). There were
highly significant variations among genotypes (p ≤ 0.001) across UAV
aerial surveys. When P-spline analysis was not performed, the average
H2 of time-series fPV was 0.53, indicating that environmental factors had
a significant impact. After P-spline analysis was performed, the average
H2 of time-series fPV increased to 0.80, reducing the influence of envi-
ronmental factors and increasing the prominence of genetic effects,
which helps to explore the results caused by genetic effects.

Better predictions for the genotypic performance of field breeding
experiments were obtained by correcting for the spatial effect. Fig. 5
demonstrates the good relationships between the measured and

estimated fPV and fNPV. The estimation accuracy of the fPV shape model
(Fig. 8a) is as follows: with P splines (R2 ≥ 0.62, RMSE ≤ 0.17) and
without P splines (R2 ≥ 0.58, RMSE ≤ 0.26). The shape model of fNPV
(Fig. 8b) with P splines (R2 ≥ 0.67 and RMSE≤0.11) provided better
accuracy than without P-splines (R2 ≥ 0.60, RMSE ≤ 0.19). The esti-
mation accuracy of the shape model considering the spatial heteroge-
neity was improved when compared with results without the P-spline
method. No significant systematic error appears in the time-series shape
models for the three duplications. Time-series curves of five soybean
cultivars selected from the best and worst estimation accuracy are
shown and compared in the yellow and green boxes of Fig. 8a–b,
respectively. The time-series fPV and fNPV shape model with P splines are
an effective method for correcting spatial heterogeneity between
different duplications of the same germplasm across a range of impor-
tant growth stages.

3.5. Migrating time-series shape model from Sanya to Nanchang

The time-series shape model established in Sanya was rescaled by
using xscale, yscale, and tshift to fit the curves of each soybean cultivar
in Nanchang. The fitting accuracy of the target curve in Nanchang was as
follows: R2= 0.89, RMSE= 0.11, and slope= 1 (Fig. 9a). The time-series
shape model fits accurately with the observed target curve in Sanya with
R2 = 0.97, RMSE=0.039, and slope = 0.97 (Fig. 9b). 18 cultivars
(Fig. 9c) were randomly taken as examples to illustrate the consistency
of the two sites. Fig. 6b shows that the rescaled shape model in Sanya is
consistent with the shape model in Nanchang. Upon considering the
temperature and photoperiod, the AUCpt of each soybean cultivar at the
vegetation and reproductive stages is almost the same at both sites and
in both years (Fig. 9c). The shape model built with AUCpt minimizes the

Fig. 5. Discrete distribution of flowering date (FD) and maturity date (MD) in soybean cultivars and their correlation with temperature and latitude. (a) and (b) The
distribution of FD and MD from 2018 to 2020 at ten sites: HrB (Harbin), GZL (Gongzhuling), TH (Tonghua), SJZ (Shijiazhuang), LC (Liaocheng), XZ (Xuzhou), NJ
(Nanjing), HF (Hefei), WH (Wuhan), and NC (Nanchang). (c) Represents the correlation coefficient among temperature, FD, and MD. (d) The regression analysis
results between latitude and AUCpt from ED to MD of soybean cultivars.
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estimation errors of phenological date given different sowing times and
abnormal climatic conditions.

The measured maturity times of 36 randomly selected soybean cul-
tivars were placed on the corresponding time-series curve (Fig. 10a).
The results show that the maturity time on the time-series curves differ
between soybean cultivars. Based on the degree of leaf drop at maturity,
soybean cultivars can be categorized into three groups: no drop (all or
most leaves remain on the stem), partial drop (few leaves remain on the

stem), and complete drop (all leaves have fallen), thus determining the
deciduousness of the germplasm. Accordingly, based on the maturity
time, these cultivars may be divided into three maturation modes: near
the upper (I) asymptote, inflection points (II), and near the lower (III)
asymptote (Fig. 10b). The cultivars DaBaiPi, DaHuangDou1, and Qing6
came from Shandong, Shanxi, and Shandong, respectively, and belong to
mode I. Energy conservation causes an earlier maturity and harvest of
northern soybean cultivars grown in Sanya and Nanchang, and the

Fig. 6. Metrics of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil (BS) classification model. (a) accuracy and AUC, (b) Confusion
matrix, (c) Feature importance of fPV and fNPV classification model.

Fig. 7. Comparison of Savitzky-Golay filter (S-G filter), locally estimated scatterplot smoothing (LOESS), and proposed merit-based integrated filter.
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leaves remain green during senescence. The cultivars BaiMaoDou2,
BenDiDaHuangDou, and HeiDouZai came from Guizhou, Hebei, and
Guangdong, respectively, and belong to mode II. The cultivars Foster,
LongChuanHuangNiDou, and WuYueHuang belong to mode II and came
from Florida (United States), Guangdong, and Jiangxi, respectively.
Soybean cultivars belonging to mode III were at a lower latitude than
those belonging to mode II. These results indicated that soybean culti-
vars planted in Sanya and Nanchang mature later in southern districts
and mature progressively earlier upon moving north (Fig. 10b).

4. Discussion

4.1. Soybean growth model with photothermal accumulation area
provides a way to analyze the target growth curves of each soybean
cultivar at different experimental sites

The MET of soybean varieties involved 10 sites with variability in
climate and planting dates, spanning N16◦41′52″ in latitude. The influ-
ence of climate factors can be minimized by introducing AUCpt, as
previously shown by Zeng et al. (2016) and Setiyono et al. (2007). The
photothermal accumulation areas (AUCpt) were calculated by

Fig. 8. Comparison of shape model with P-splines and shape model without P-splines for (a) fPV and (b) fNPV.
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combining the daily temperature with local sunrise and sunset times in
this study. The FD and MD of soybean cultivars correlates highly with
the temperature (r = − 0.672 & − 0.775, Fig. 5c). Their correlation with
temperature was negative, indicating that the AUCpt of soybean culti-
vars decreases with temperature. The AUCpt of soybean cultivars cor-
relates strongly with the latitude (r> 0.77, Fig. 5d), and the relationship
between latitude and AUCpt from ED to MD follows a power function [y
= a (x+ b)3; Fig. 5d] with R2= 0.77–0.95, SD= 0.044, and CV= 5.06 %
(Fig. 5d). Based on the power function, the AUCpt and its slope at
northern China are greater than in Huang-Huai and the southern China
soybean regions, which is consistent with the results of Yang et al.
(2019) who reported a significant negative linear relationship between
critical photoperiod and maturity group.

4.2. Performance comparison of denoising and rebuilding the crop time-
series phenotypic data with S-G filtering, LOESS, and proposed merit-based
integrated filter

The accurate extraction of the time-series fPV and fNPV depends on the
deviations of the estimation, which in turn depend on wind and solar
radiation. Most studies use the Savitzky-Golay (S-G) filter and locally
estimated scatterplot smoothing (LOESS) to de-noise and rebuild crop
time-series phenotypic data (Savitzky and Golay 1964; Cleveland 1979;
Wang et al., 2014; Pan et al., 2015). S-G filtering, LOESS, and the pro-
posed merit-based integrated filter (Fig. 7) were applied and compared
to study how they affected the minimization of this remaining noise
artifact in the time series fPV and fNPV. As shown in Figs. S2 and S3, the S-
G filter tends to retain distribution features and preserve the width and

Fig. 9. Evaluation of the migration performance of time series shape models. (a) Relationship between estimated fPV from rescaled shape model in Sanya and
observed fPV from Nanchang, (b) relationship between the estimated and observed fPV from Sanya, and (c) visualization of time-series curves of 18 randomly selected
soybean cultivars.
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height of peaks in the spectral waveform. This remarkable advantage of
S-G filtering has been mentioned by Azami et al. (2012) and Moosavi
et al. (2018) and so was not unexpected. Compared with S-G filtering,
LOESS smooths better and reduces contamination in the time-series data
but flattens some of the sharp peaks that contain useful crop growth
information (Fig. S3; Moosavi et al., 2018). The proposed merit-based
integrated filter combines the merits of S-G filtering and LOESS to pro-
duce the best-performing filter (Figs. 3, S2 and S3).

4.3. Evaluation of omission of spatial heterogeneity of UAV phenotyping
platform

The two-dimensional smooth surfaces of each time point in the fPV
and fNPV datasets are fit by P-splines to assess the influence of spatial
heterogeneity for the breeding experiment. The results indicate that the
P-spline spatial heterogeneity model is promising for correcting spatial
effects across a range of important growth stages. The P-spline spatial
heterogeneity model not only recovers the spatial trend of the raw data
but also is consistent with the raw data (Fig. S4). The genotypic per-
formance of the field breeding experiments is better predicted by cor-
recting the spatial effect with R2 ≥ 0.62, RMSE≤0.17. In addition, no
significant systematic error occurs with the time-series shape models for
three duplications of the field. In short, the time-series fPV and fNPV shape
model with P-splines is an effective method for correcting spatial het-
erogeneity between different duplications of the same germplasm. The
effectiveness of the P-splines-Analysis of variance spatial field in
breeding trails was tested onmanual measurements or field phenotyping

platforms (Lado et al., 2013; Rodríguez-Álvarez et al., 2018; Kronenberg
et al., 2020). The present results prove the effectiveness of applying P-
splines-ANOVA spatial field to breeding trials using UAV phenotyping
platforms. The breeding values of fPV and fNPV are predicted by using the
BLUPs after accounting for the effects of spatial heterogeneity and
climate factors and building unique shape models of soybean cultivars
with extensive genetic diversity.

4.4. Environmental portability of growth curve of soybean cultivars

The fPV and fNPV time series in Sanya combined with AUCpt were fit
by using the double logistic function and S curve with R2 ≥ 0.62,
RMSE≤0.17. The soybean cultivars’ growth curve in Nanchang was
transformed from those in Sanya by stretching, compressing, and
translating in the t and y directions with R2 = 0.89, RMSE=0.11, and
slope = 1. Considering the temperature and photoperiod, the AUCpt of
each soybean cultivar at the vegetation and reproductive stages was
almost the same at both sites and in both years (Fig. 9). The shape model
built with AUCpt minimizes the estimation errors of phenological date
when different sowing times and abnormal climatic conditions occur.
Our results are entirely consistent with those recently presented by Zeng
et al. (2016), Zhou et al. (2020), and Zhang et al. (2022) based on
MODIS and UAV imagery. Our method further divides soybean cultivars
according to their maturity time into three maturation modes: near the
upper asymptote (I), inflection points (II), and near the lower asymptote
(III) (Fig. 10b). Soybean cultivars planted in Sanya and Nanchang
mature later than those from the southern district, and maturation times

Fig. 10. Distinction and visualization of three maturation modes for different soybean varieties. (a) Patterns of emergence, flowering, and maturity date on fPV time
series curves for different soybean varieties. (b) The latitude of soybean cultivars selected from the three modes of maturation.
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gradually advance as one moves north to the northern district. Energy
conservation causes the leaves of northern soybean cultivars growing in
Sanya and Nanchang to remain green during maturation (Fig. 10).

5. CONCLUSION

The multi-environment trials (METs) for soybean cultivars were
conducted across 10 different sites, which exhibited variation in climate
and planting dates, spanning N16◦41′52″ in latitude. A proposed strategy
was presented in this study to describe the target growth curve of soy-
bean cultivars with extensive genetic diversity and phenotypic varia-
tion, and that accounts for the effects of spatial heterogeneity and
climate factors in multi-environment trials (METs). The relationship
between time and latitude AUCpt from ED to MD is first explored to
prepare for modelling subsequent AUCpt-based growth across multiple
regional test sites. The relationship between latitude and AUCpt follows a
power function with R2 = 0.77–0.95, SD=0.044, and CV=5.06 %. Ac-
curate shape models of soybean cultivars are established by using merit-
based integrated filtering and a field spatial-correction model, which
produces accurate results with R2 ≥ 0.62, RMSE≤0.17. The environ-
mental portability of the growth curve of soybean cultivars is evaluated
by using the time series fPV in Sanya and Nanchang with a fitting ac-
curacy of R2 = 0.89, RMSE=0.11, and slope = 1. The resulted growth
curve of soybean diversity panel offers a promising opportunity for ge-
netic study and breeding program.
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