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A B S T R A C T

Accurate quantification of hyperspectral features altered by plant disease infection is pivotal for effective disease
management. However, the sensitivity of hyperspectral features to plant disease progression remains elusive,
primarily because these features are often influenced by plant growth and environmental factors in addition to
the specific disease. This study explores the sensitivity of biophysical and spectral features as indicators for maize
adaptation to leaf spot disease. Using high-resolution UAV hyperspectral imaging, we captured maize adaptation
dynamics over 30 days post-infection. We evaluated the sensitivity and importance of hyperspectral features for
disease monitoring, including biophysical parameters retrieved by the PROSAIL model, and spectral features,
including spectral reflectance, vegetation indices (VIs), and wavelet features (WFs). Our findings reveal that WFs
first indicate disease response as early as 6 days after infection (DAI), followed by VIs at DAI 8, and variations in
chlorophyll content (Cab) become apparent by DAI 10. The Cab, plant senescence reflectance index (PSRI), and
normalized photosynthetic reflectance index (NPRI) are determined to be important features at the early stage of
the disease. Our experimental results show that the different feature sets are complementary at the early and
severe stages of the disease. Our classification models integrating Cab, VIs, and WFs showed higher overall ac-
curacy than models using only spectral features or VIs, with a maximum improvement of 9.36 %. However, these
feature sets are redundant in the mild and initial severe disease stages, where models using only spectral features
achieve the highest overall accuracy of 86.21 %. This study underscores the novel insights by offering an un-
derstanding of plant responses to disease infection and enhancing early detection strategies.

1. Introduction

Maize (corn, Zea mays L.) is one of the most widely demanded and
rapidly growing grains globally (Martinez and Fernandez, 2019; Yan
and Tan, 2019). It is susceptible to numerous plant diseases, with as
many as 112 reported worldwide (Kumar et al., 2014). Leaf spot, a
prevalent disease across different regions, has led to significant yield
losses in vulnerable maize germplasm (Dhami et al., 2015; Gonçalves
et al., 2013). Traditional methods for monitoring leaf spot rely on visual

inspection by experts in the field, which is time-consuming, labor-
intensive, and challenging to implement on a large scale.

With the advent of remote sensing technology, particularly hyper-
spectral imaging, a powerful tool has emerged that is capable of non-
invasive, large-scale monitoring of plant disease (Chen et al., 2017;
Hornero et al., 2020). Hyperspectral imaging’s fine spectral resolution
holds the promise of monitoring and diagnosing plant diseases (Mahlein
et al., 2018; Thenkabail et al., 2004). This technology captures a broad
spectrum of information, potentially revealing intricate details about
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plant physiology and health that are invisible to the naked eye or
through traditional multispectral imaging (Mahlein et al., 2013; Tian
et al., 2021). Recent research in hyperspectral disease detection has
predominantly focused on constructing machine learning models using
hyperspectral features. For instance, Huang et al. (2022) underscored
the necessity of choosing suitable machine learning methods and feature
selection algorithms to enhance the accuracy of early and mid-term
remote sensing monitoring of wheat stripe rust. Tian et al. (2021)
demonstrated that a limited yet carefully chosen set of spectral features,
identified through the machine learning based sequential floating for-
ward selection (ML-SFFS) algorithm, effectively distinguishing rice
leaves infected with leaf blast. Similarly, Luo et al. (2021) evidenced
that machine learning models based on vegetation indices are highly
promising for surveilling maize dwarf mosaic virus infections. However,
remote sensing captures a multifaceted array of surface information,
extending beyond vegetation and diseases to include elements like plant
growth, environmental conditions, and so on (Weiss et al., 2020). These
additional factors add complexity when interpreting hyperspectral fea-
tures for disease monitoring and model transferability in canopy scales.

Hyperspectral features widely used in plant disease tasks primarily
include biophysical parameters and spectral features (Hernandez-
Clemente et al., 2019). Biophysical parameters such as leaf pigment
content, derived from radiative transfer models, have been used as an
indicator of vegetation health (Hornero et al., 2021; Tian et al., 2021;
Zarco-Tejada et al., 2018). Increasing disease severity over time can
ultimately cause variations among leaf photosynthetic pigment pools,
known as constitutive changes (Hernandez-Clemente et al., 2019).
Additionally, spectral features like spectral reflectance, vegetation
indices (VIs), and wavelet features (WFs) have proven effective for plant
disease monitoring (Camino et al., 2021; Tian et al., 2021). Nonetheless,
their interpretation is challenged by illumination, structural, and influ-
enced by different crop varieties and growth stages (Barton and North,
2001; Damm et al., 2015; Myneni et al., 1995). Furthermore, knowledge
of causal relations between dynamics in plant response to leaf spot and
required sensitivity of hyperspectral features is not fully exploited yet.
Therefore, it is urgent to comprehend the sensitivity of different
hyperspectral features for monitoring plant disease in canopy scales.

In this study, we hypothesize that the complexity of observations in
plant disease monitoring obscures the inherent sensitivity of these ob-
servations for plant-pathogen relationships during leaf spot infection.
Therefore, it is crucial to disentangle unwanted sensitivities from the
targeted features for remote sensing-based classification in monitoring
disease. We designed leaf spot infection experiments in three maize
fields. The objectives are to (i) unravel the temporal sensitivity of

various hyperspectral features as disease severity increased using a time
series analysis approach, (ii) analyze the importance of hyperspectral
features (biophysical parameters and spectral features) in response to
leaf spot infection, (iii) build classification models for assessing maize
resistance to leaf spot disease based on the selected features.

2. Materials and methods

2.1. Experimental design

The study area was in Xinxiang City, China, a warm temperate
continental monsoon climate characterized by hot and rainy and breed
disease in summer. This region belongs to North Henan Plain (Yubei
Plain), with maize as the main crop. Three sites were selected in this
study: sites A, B, and C (Fig. 1).

Site A and B were in Yuanyang (35.15◦ N, 113.97◦ E). Both sites A
and B were maize breeding fields with a planting density of 90,000
plants/ha planted on May 30, 2022. Site A consists of 120 rows, each 3
m, and site B consists of 1031 rows, each 3 m. In site A, 20 rows were
considered as a genotype plot, with a total of 6 genotype plots. In each
plot, 3 rows *5 plants were selected and treated with the leaf spot
bacterial solution on the evening of August 2, 2022. The inoculation of
maize with the bacterial leaf spot pathogen adhered to the technical
specification for the identification of maize disease and pest resistance of
China (NY/T 1248.10–2016). A water-dispersible granule formulation
of Cercospora zeina bacterial solution was prepared at a concentration
ranging from 1 × 105 to 1 × 106 pores per milliliter. The bacterial leaf
spot solution was dispensed using a sprayer to ensure thorough
coverage. The infected areas (6 areas) are shown in Fig. 1 using a red
mask. The healthy areas (uninfected areas, yellow masked plots) were
selected in equal numbers and sizes to the infected areas. When choosing
these areas, we aimed to minimize the impact of pathogen transmission.
The two adjacent plots’ infection and healthy areas were connected
separately, and the infected and healthy areas were distributed at in-
tervals. In site B, each row was considered a plot with a genotype.
Totally site B contained 1013 genotypes including 483 susceptibility
genotypes and 530 resistant genotypes. This entire site was simulta-
neously treated with the leaf spot bacterial solution, paralleling the
treatment applied to site A.

Site C, located in Xinxiang (35.30◦ N, 113.93◦ E), consists of 492
plots, each with a single genotype measuring 1.25 x 1.8 m. Site C con-
tained 492 genotypes, including 311 susceptible and 181 resistant ge-
notypes. This site, with a planting density of 90,000 plants/ha, was
planted on May 30, 2021. Each plot of this site was treated with the leaf

Fig. 1. Overview of field experiments at two locations (Xinxiang and Yuanyang) in 2021 and 2022. The upper center figure shows the geographic location of the
experimental area. Site A (lower center) and B (left) in Yuanyang in 2022. The red mask in site A presented infected areas, and the yellow mask showed healthy areas.
The site C (right) in Xinxiang in 2021.
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spot bacterial solution on the evening of 2 August 2021.
Overall, all the infection processes occurred during the trumpet stage

of maize growth. In managing the fields, we adhered to fertilizer
application and irrigation practices guided by the expertise of local
agricultural professionals. This approach aimed to provide a consistent
balance of water and nutrients to reduce their potential impact on dis-
ease occurrence in the maize plants.

2.2. Field surveys

In field surveys, two different disease severity assessment methods
were used. In site A, a temporal ground survey was employed to analyze
the response time of remote sensing features to the disease (Fig. 2). In
sites B and C, the resistance to leaf spot in genotypes was evaluated
(Fig. 3) to verify the performance of hyperspectral features in disease
monitoring tasks. In all field surveys, 3 maize plants were randomly
selected from each area/plot. From each plant, 3 leaves were collected:
the leaf above the ear, the ear leaf, and the leaf below the ear. There was
a total of 9 leaves per area/plot.

In site A, field surveys were conducted simultaneously with hyper-
spectral data acquisition after the onset of the disease infection
(Table 1). Following the disease severity grading method from Tian et al.
(2021), disease severity was classified into different developmental
stages. Though infections varied among leaves, visual inspections hel-
ped broadly categorize the infection processes. Disease severity was
assessed in three levels based on lesion size and condition (Fig. 2).
Specifically, early infection, from initial infection to scattered lesions on
leaves, occurred between 2 and 10 days after infection (DAI); mild
infection, with two or more connected linear lesions, was at DAI 12 and
15; severe infection, with three or more connected planar lesions,
occurred at DAI 22, 24, and 30.

In sites B and C, the field surveys were conducted on August 26, 2022
(DAI 24) and September 2, 2021 (DAI 30), respectively (Table 1). The
images of the selected leaves were documented. Subsequently, multiple
experts collaboratively interpreted the proportion of leaf spots pre-
sented. Based on visual inspections, leaves were classified into one of six
categories depending on the percentage of leaf spot coverage. Following
this classification, the disease index (DI) for every plot was computed
using the methodology of Huang et al. (2007). The resistance of maize
was then determined by referencing the DI values. Maize resistance was
classified into two groups, resistant (DI: 0–30 %) and susceptible (DI: 31
%–100 %), following the China national standard (NY/T 1248.1–2006),
titled technical specification for identification of maize resistance to leaf
spot disease.

2.3. Hyperspectral images collection and preprocessing

Hyperspectral images were obtained from the study site using a Pika
L hyperspectral camera (Resonon, Bozeman, MT, USA) mounted on an
unmanned aerial vehicle (UAV) (Matrice 600 Pro Hexacopter, DJI,
Shenzhen, China). The images were taken at 50 m above the ground,
flying at a speed of 1.5 m/s. All flights took place between 10:00 and
14:00 to minimize the effects of sun angle. The DJI M600 Pro UAV had a
maximum payload capacity of 6 kg and a 30-minute endurance. It was

equipped with an onboard RTK-GNSS (real-time kinematic global nav-
igation satellite system) unit for centimeter-level navigation. The Pika L
camera featured 150 bands ranging from 400 to 1000 nm with a 2.1 nm
spectral resolution and a 3.3 nm FWHM. The hyperspectral sensor’s 17
mm optical focal length provided an instantaneous field of view (IFOV)
of 1.47 mrad and an angular field of view (FOV) of 30.8◦. The image
acquisition time is shown in Table 1.

The raw hyperspectral cubes were converted to radiance using the
instrument’s radiometric calibration file. Cubes on the same flight path
were combined into a linear cube. The linear cubes were georeferenced,
based on high-resolution RGB images collected simultaneously and the

Fig. 2. RGB images of maize leaves under different leaf spot disease infection stages.

Fig. 3. Flowchart of maize resistance assessment. x is defined as 0, 1, 3, 5, 7, 9,
representing respective disease coverage of 0 %, 0 %–5%, 6 %–25 %, 26 %–50
%, 76 %–100 % on the leaf surface; f is the total number of leaves of each class;
n is the highest degree of disease severity (in this paper, n = 9). The resistance
of maize genotypes was categorized as resistant and susceptible, corresponding
to DI value ranges of 0–30 % and 31–100 %, respectively.

Table 1
Field surveys and hyperspectral images acquisition time.

Site Year Field surveys time Hyperspectral images acquisition
time

A 2022 Simultaneous with
hyperspectral data
acquisition

DAI 0, DAI 2, DAI 4, DAI 6, DAI 8, DAI
10, DAI 12, DAI 15, DAI 22, DAI 24,
DAI 30

B 2022 DAI 24 DAI 12, DAI 15, DAI 22, DAI 30, DAI
37

C 2021 DAI 30 DAI 18, DAI 25, DAI 31, DAI 37

DAI: days after infection.
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ground control points, using ArcGIS 10.2 (Esri, Redlands, CA, USA).
Radiometric calibration was performed with a 60 % reflectance gray
cloth with known reflectance collected at the same time as hyperspectral
data in ENVI 5.3 (ITT Visual Information Solutions, Boulder, United
States). Then, a seamless mosaic for the research site was created using
all the linear cubes. Finally, zonal statistics were performed on the
vector boundaries of each plot. This step was completed using the zonal
statistics as a table plugin in ENVI 5.3.

2.4. Feature extraction

This study investigated hyperspectral features comprising biophysi-
cal parameters and spectral features. Biophysical parameters derived
from radiative transfer models (RTM) are considered, leveraging the
comprehensive data captured by hyperspectral systems across an array
of continuous narrow bands (Kokaly and Clark, 1999). Simultaneously,
spectral features based on one or more spectral reflectance exhibited
empirical relationships with plant information.

2.4.1. Spectral features
Mean reflectance values at the canopy scale for each plot were uti-

lized to calculate various narrow-band spectral features. These features
include spectral reflectance, VIs, and WFs. Spectral reflectance within
the wavelength range of 400 nm to 900 nm, comprising 117 bands, was
chosen to avoid the lower signal-to-noise ratio typically observed at the
edges of the sensor’s spectral range. VIs (Table S1) gathered from the
literature were computed for spectral feature analysis. WFs were derived
from the spectral data using the continuous wavelet transform (CWT),
leveraging the PyWavelets library’s pywt (Python 3.7). The CWT was
executed on the reflectance spectra to obtain wavelet coefficients, which
encapsulate the spectral information at various scales. Specifically, for
each reflectance spectrum within the dataset, the transformation was
conducted over scales 3 to 8 and applied the Mexican Hat wavelet as the
mother wavelet basis, following the methodology outlined by Cheng
et al. (2010).

2.4.2. Biophysical parameters
Biophysical parameters, including chlorophyll content (Cab), carot-

enoid content (Car), equivalent water thickness (Cw), dry matter content
(Cm), and anthocyanin content (Anth), were quantified by inverting the
PROSAIL model, using the mean reflectance values of each plot (Fig. 4).
The PROSAIL model couples the PROSPECT-D leaf reflectance model
with the SAIL canopy model. PROSPECT-D accounts for the biophysical
parameters in the leaf, while SAIL considers the properties of the canopy
structure. We chose this model because, at the time of this study, the
study plots had reached canopy closure and could be considered a uni-
form chaotic medium.

Initially, a simulation dataset containing 79.872 million measures
was generated with the PROSAIL model. The input variables for the
model were estimated based on leaf optical property datasets and prior
studies (Nie et al., 2023), aiming to encompass the range of variability in
the practical maize field (Table 2). The output spectra were weighted
average according to the spectral response function of the PikaL sensor,
ensuring uniform and comparable spectral resolution across different
spectra.

A multilayer perceptron (MLP) model was trained on the simulated
dataset to establish the relationship between the simulated spectra and
biophysical parameters. The leaf area index (LAI) was obtained using
actual values measured in the field with a SUNSCAN instrument (Delta-T
Devices, Cambridge, UK) to address the ill inversion issue. The MLP
network was designed with an input layer with the same number of
nodes as the number of the PikaL bands plus one (LAI). The inner layers
successively applied a compression ratio of two, reducing the number of
nodes by half. The output layer had the same number of nodes as the
biophysical parameters. The network employed dropout regularization
to prevent overfitting with a probability of 0.2. The ReLU activation

function was applied throughout the network. Finally, the inversed Cab
and Anth were evaluated using the coefficient of determination (R2) and
root mean square error (RMSE) based on the field measured Cab and Anth
at site A (Fig. S1). The Cab and Anth were measured with Dualex Scien-
tific+ (Force-A, Orsay, France) following the measurements described
by Zhou et al. (2023). These measurements were conducted simulta-
neously with field surveys.

Fig. 4. Flowchart of PROSAIL simulation and retrieval. Cab: chlorophyll con-
tent, Car: carotenoid content, Cw: equivalent water thickness, Cm: dry matter
content, Anth: anthocyanin content, VIs: vegetation indices, MLP: multi-
layer perceptron.

Table 2
Inputs for PROSAIL simulation.

Model Variable Acronym Range Steps Units

PROSPECT-D
(leaf level)

Chlorophyll content Cab 1–100 5 μg/
cm2

Carotenoid content Car 0–26 1 μg/
cm2

Anthocyanin content Anth 0–20 1 μg/
cm2

Brown pigment
content

Cbrown 0.2 N/A N/A

Equivalent water
thickness

Cw 0–0.08 0.01 cm

Dry matter content Cm 0–0.04 0.01 g/cm2

Leaf structure
parameter

N 1–1.5 0.1 N/A

SAIL
(canopy
level)

Leaf area index LAI 1–5 0.3 N/A
Hot-spot size
parameter

Hspot 0.25 N/A mm− 1

Solar zenith angle SZA 65 N/A Degree
Observed zenith
angle

OZA 0 N/A Degree

Relative azimuth
angle

RAA 0 N/A Degree

Average leaf
inclination angle

ALA 30–50 10 Degree

Note: The ‘Range’ column indicates the variation interval for each parameter,
and ‘Steps’ describes the quantification intervals within this range. For example,
Cab quantified within a range of 1 to 100 μg/cm2, with 5 μg/cm2 increments. N/
A: not applicable.

Y. Bai et al.
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2.5. Feature analysis

We proposed a comprehensive feature analysis method to identify
sensitive features, as illustrated in Fig. 5. This process begins by utilizing
all hyperspectral features retrieved from infected and healthy plots at
site A. Given that each plot consists of numerous observations (pixels),
we subdivided each plot into twelve equal parts, enriching the hyper-
spectral data for analysis. In total, both infected and healthy areas had
72 samples. We applied time series analysis to unravel the temporal
sensitivity of various hyperspectral features to increase leaf spot severity
(Section 2.5.1), considering the effect size using Cohen’s d. Subse-
quently, we trained an intelligent agent capable of automatically
learning policies to select an optimal feature subset to address multi-
collinearity and select-rich information features. These features are
named as ‘parsimony features’ (Section 2.5.2).

2.5.1. Response time analysis
The response time analysis is crucial for understanding and quanti-

fying the temporal dynamics of hyperspectral features in response to the
vegetation stress process (Behmann et al., 2014; Langenkämper et al.,
2022). To accurately focus on the target disease, a time-based normal-
ization approach was employed to account for canopy structural in-
fluences that frequently overlay dynamics in hyperspectral features.
This normalization strategy is essential to avoid misinterpretation of
data and has been proven to compensate for most of the remote sensing
parameter variation caused by illumination effects and canopy structure
(Damm et al., 2022; Zarco-Tejada et al., 2012). This approach calculated
the difference between the hyperspectral feature values observed at a
given time (denoted as Ft) and the average of these features recorded
before the infection event on August 2nd (denoted as Ft́). We use ΔF to
represent the time series of change in each hyperspectral feature, which
is calculated by

ΔF = Ft − Fʹ
t (1)

The resulting time series represents the increment of individual
hyperspectral features considering the first observations (DAI 0) in

physical units. To assess the impact and reliability of leaf spot infection
on plant responses as estimated by various hyperspectral features, we
employed two statistical measures: (1) 95 % confidence intervals based
on a z-distribution; (2) effect size using Cohen’s d, which accounts for
the standard deviation of the healthy canopy.

We define a threshold effect size Z to represent the substantial dif-
ference between the healthy and infected observations. Based on our
comprehensive testing and previous study (Charach et al., 2011), Z=0.8
is the most effective value and, therefore, chosen for the implementa-
tions. In this step, we established a sensitive feature selection criterion:
the start time of consecutive substantial difference with the same sign is
determined as when the hyperspectral feature begins to respond to the
leaf spot disease. In addition, only features that showed a response
before DAI 15 were selected for further analysis in the following stages.
These were observed at more than three-time points, demonstrating the
substantial differences between the healthy and infected observations.

2.5.2. Collinearity diagnostics
Following sensitivity analysis in Section 2.5.1, we identified several

sensitive features, some exhibiting multicollinearity and redundancy.
These sensitive features will now be subjected to an in-depth collinearity
assessment to refine our feature selection for the classification model.
We modeled the task of collinearity diagnostics as a Markov decision
process (MDP) fromMou et al. (2022). Consequently, RL was adopted as
the strategy of choice for formulating a sophisticated collinearity di-
agnostics methodology (Fig. 6). Compared with traditional approaches,
RL allows for continuous learning and adjustment, a critical advantage
in environments where the features change over time (Mou et al., 2022).
In addition, RL can efficiently manage the complex, high-dimensional
spaces typical of hyperspectral images (Feng et al., 2022).

In this MDP, we define the action, state, and reward. Let F denote the
set of all the sensitive features, representing the total count of these
features, and let fi represent an individual feature within F. The RL
model’s state, action, and reward are defined as follows.

State: The state (s) is a subset of F, with the state space being the
power set of F. Each state is uniquely depicted by a feature encoding—a
vector of length n. If a feature is selected, its corresponding element is set
to 1; otherwise, it remains 0.

Action: The agent’s primary objective is to select a feature from F at
each iteration. Action refers to the position of a feature in a list, where
the chosen position’s value changes from 0 to 1. This selection process
continues until the predefined number of features is reached; x features
were optimal for ensuing classification models.

The transition function defines how the system moves from one state
to another based on an action taken. Specifically, if an action is taken to
select a feature already chosen within the current episode, the state st
remains unaltered in the succeeding step. If the chosen feature fi has not
been selected in the current episode, then the state st evolves to a new
state st+1, where the corresponding element of fi is set to 1 in the feature
encoding. When the count of chosen features matches the predefined
threshold, the state transitions to a “Terminal” state, signifying the end
of the episode.

Mathematically, the transition function can be described as:

Fig. 5. Overview of the methodology used for feature analysis and classifica-
tion. Note: VIs: vegetation indices, BPs: biophysical parameters, WFs: wavelet
features, CWT: continuous wavelet transform, RL: reinforcement learning,
SHAP: Shapley additive explanations, GBDT: gradient-boosting decision tree,
RF: random forest, OA: overall accuracy; 3 feature sets include biophysical
parameters in combination with spectral features (BSF), spectral features alone
(SF), and vegetation indices alone (VI). Fig. 6. Overview of reinforcement learning strategy.

Y. Bai et al.
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st+1 =

⎧
⎪⎨

⎪⎩

Terminal if reaching the preset number
st if at = select a feature fi already in st
st + fi if at = select a new feature fi

(2)

in which st is the current state, st+1 is the next state, fi is the selected
feature, and at is the current action.

Reward: The agent is rewarded based on the efficacy of its feature
selection. A penalty of − 1 is applied if a repeated feature is chosen.
Conversely, a reward of 1 is granted when a non-collinear feature is
selected. To determine collinearity, we employ the variance inflation
factor (VIF), a metric introduced by Gareth et al. (2013), to measure the
variance increase of a regression coefficient due to collinearity. A VIF
below 10 suggests that the chosen feature is not collinear with previ-
ously selected ones. However, if collinearity is selected (VIF>10), the
information entropy, gauging the richness of spectral information, is
used. The reward difference between states and st+1 is governed by the
disparity in information entropy. Specifically, the average information
entropy of the selected features was measured as Equation (3), in which
A represents a set of previously executed actions, N designates the total
count of chosen features, and P stands for the probability mass function.

MIE(s) = −
1
|A |

∑

i∈A

∑N

n=1
P
(
fni
)
log2P

(
fni
)

(3)

Subsequently, the reward function is mathematically structured as:

rt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

- 1 if at = select a feature fi already in st

1
if at = select a feature fi noncollinearity

with features already in st

MIE(st+1) − MIE(st)
if at = select a feature fi collinearity

with features already in st
(4)

in which st is the current state, st+1 is the next state, fi is the selected
feature, at is the current action, and rt is the current reward.

To implement this strategy, we adapted our approach to incorporate
the proximal policy optimization (PPO) algorithm. This training process
was facilitated by the Ray framework. The tune library was used to
search for the optimal model hyperparameters. Detailed settings of each
parameter are provided in Table 3.

2.6. Feature evaluation

To validate the selected features, we assessed the importance of the
parsimony features (Section 2.6.1) and demonstrated the effectiveness
of these features for machine learning models across different sites and
times (Section 2.6.2).

2.6.1. Feature importance
We utilized the Shapley additive explanations (SHAP) method

(Lundberg and Lee, 2017) for model feature interpretation in this
evaluation. We generated SHAP summary plots based on random forest
(RF) models to visualize the significance of each feature. The

performances of the models are shown in Table S2.
The feature importance analysis process consisted of two main parts.

Firstly, we conducted a SHAP summary using the infected areas. We
utilized hyperspectral features that were calculated throughout the
entire experimental period and compared them to DAI, which increases
with leaf spot severity. This phase aimed to gain insights into the rela-
tionship between hyperspectral features and disease severity. Secondly,
we compared the hyperspectral features obtained from the infected and
healthy areas at early, mild, and severe infection stages. This compari-
son sought to identify the contribution of features in distinguishing
between infected and healthy plots at different disease stages.

2.6.2. Machine learning models
We employed two regression machine learning algorithms to esti-

mate the DI for each plot on the survey dates: RF and gradient-boosting
decision tree (GBDT). Similarly, we applied the same machine learning
algorithms in a classification context to categorize maize genotypes as
disease-resistant or susceptible.

In this study, we conducted 100 iterations of data division into two
samples, namely the training and testing samples, by randomly selecting
80 % (n = 810 for 2022; n = 394 for 2021) and 20 % (n = 203 for 2022;
n = 98 for 2021) of the dataset, respectively. The validation process
involved k-fold cross-validation, wherein the original sample was par-
titioned randomly into 10 subsamples of equal size and repeated five
times. Optimal hyperparameters for the models were identified by grid
search and are presented in Table 4. Model performance was quantified
by calculating R2, RMSE, and mean absolute error (MAE) for regression
accuracy. We analyzed the confusion matrix, overall accuracy (OA), and
Cohen’s kappa coefficient (kappa) for classification accuracy. In the
development of the regression and classification models, we utilized
Python 3.7 and the scikit-learn library. For GBDT models, we employed
the GradientBoostingRegressor and GradientBoostingClassifier from the
ensemble module. Similarly, we used the RandomForestRegressor and
RandomForestClassifier from the same module for RF models.

To compare the effectiveness of different feature sets in classification
models, we evaluated the classification accuracies of three distinct sets
of hyperspectral features: (1) biophysical parameters in combination
with spectral features (BSF), (2) spectral features alone (SF), and (3)
vegetation indices alone (VI).

3. Results

3.1. Temporal response of features after leaf spot infection

This section explores the temporal dynamics of hyperspectral fea-
tures following maize leaf spot infection. The effect sizes quantify the
analysis by comparing these features between infected and healthy areas
to pinpoint the onset and progression of the disease’s impact (detailed in
Supplementary Table S3–S5).

3.1.1. Biophysical parameters
Compared to the DAI 0 measurements (Fig. 7), the change in Cab

(ΔCab) exhibited an initial increase followed by a gradual decrease, with
the accumulation of Cab in infected areas consistently lagging that in the

Table 3
Parameters for PPO in Ray.

Parameter Value Parameter Value

lr 5e-3 num_workers 6
train_batch_size 256 num_envs_per_worker 1
sgd_minibatch_size 128 rollout_fragment_length 10
num_sgd_iter 10 entropy_coeff 0.01
gamma 0.8 vf_loss_coeff 1.0
lambda 0.95 vf_clip_param 10.0
clip_param 0.3 use_gae True
kl_coeff 0.2

Table 4
Hyperparameters for each machine learning models.

Hyperparameter Search space Regression Classification

Gradient-boosting decision tree (GBDT)
n_estimators 10–100 80 50
learning_rate 0.1–0.5 0.1 0.3
max_depth 2–15 5 5
min_samples_leaf 2–15 5 5
Random forest (RF)
Number of trees 10–50 40 30
Maximum depth 20–100 50 50
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healthy areas. Starting from DAI 10, a substantial difference in the Cab
change rate between infected and healthy areas was observed, sub-
stantiating the effect of leaf spot disease on chlorophyll dynamics.

Variations in ΔAnth, ΔCw, ΔCm, and ΔCar did not show consistently
substantial differences between infected and healthy areas. These
measurements revealed a noisy nature, making it challenging to find a

clear trend or identify consistently substantial differences between the
infected and healthy areas.

3.1.2. Spectral reflectance
Spectral reflectance across the 400–900 nm wavelength range did

not meet the sensitivity criteria established for feature analysis as

Fig. 7. Changes of biophysical parameters in infected areas (n = 72 samples) and healthy areas (n = 72 samples) on different DAIs. The error bars represent the 95 %
confidence interval, and the values included represent the effect size, as determined by Cohen’s d. Δ: normalized considering the change of the first infection day (2
August); Cab: chlorophyll content; Car: carotenoid content; Cw: equivalent water thickness; Cm: dry matter content; Anth: anthocyanin content.

Fig. 8. Changes of spectral reflectance in infected (n = 72 samples) and healthy areas (n = 72 samples) on different DAIs. The red (R), green (G), blue (B), red edge
(Re), and near-infrared (NIR) bands were presented by wavelengths of 473 nm, 560 nm, 666 nm, 717 nm, and 843 nm corresponding to the central wavelength
positions of the RedEdge-MX multispectral camera (Micasense company, USA), respectively. The error bars represent the 95 % confidence interval, and the values
included represent the effect size, as determined by Cohen’s d.
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outlined in Section 2.5.1 (Fig. 8). The lack of consistency and continuity
in the data suggests that spectral reflectance is prone to noise, which
could complicate disease detection and risk false positives in practical
disease monitoring. These findings underscore the limited trans-
ferability of models based on spectral reflectance for robust disease
monitoring.

3.1.3. VIs
The earliest response of VIs to the disease occurred at DAI 8, with the

photochemical reflectance index (PRIn) related to xanthophyll and
photosynthetic efficiency continuing to respond to leaf spot disease until
DAI 30 (Table 5). Subsequently, starting at DAI 12, the responding VIs
included five indices associated with carotenoid and chlorophyll (PSRI,
B, G, R, and RGI), three indices related to xanthophyll and photosyn-
thetic efficiency (PRI515, PRIM3, and PRIM4), one index related to chlo-
rophyll fluorescence (CUR), and three indices related to anthocyanins
(VARI, VARI2, and ARIm). From DAI 15, responding VIs included two
related to structural traits (NDVI and LIC1) and two to chlorophyll (SIPI
and PSND). From DAI 22, responding VIs included the structural-
associated OSAVI and chlorophyll-associated TCARI. The response
time of VIs highlights a temporal progression in the disease’s impact on
various physiological and biochemical processes.

Following a multicollinearity diagnosis based on RL, five represen-
tative VIs (NDVI, PSRI, PRIn, RGI, and VARI2) were selected (Fig. 9). The
change trends in NDVI maintaining a close-to-zero difference between
DAI 0–DAI 12 and DAI 0 in both infected and healthy areas, indicate that
NDVI does not largely change. After DAI 12, the difference in infected
areas compared to DAI 0 was consistently higher than in healthy areas,
with the infected areas dropping seriously. VARI followed a similar
trend to NDVI but shifted earlier by DAI 10. PSRI’s variations were
minimal until DAI 15, after which the infected plots increased notably.
RGI mirrored PSRI’s changes but began at DAI 8. Meanwhile, PRIn,
maintaining a close-to-zero difference with DAI 0 in healthy areas,
experienced a sharp increase after DAI 15 in the infected areas.
Compared to raw spectral reflectance, these VIs provide a relatively
stable indication of vegetation status.

3.1.4. WFs
From the early to mild infection stages, the WFs are sensitive to leaf

spot infection, predominantly spanning the 450–750 nm range,
encompassing scales of 3 to 8 (Table 6). Notably, the earliest response of
WFs to the disease was observed at DAI 6, specifically with WF586,6,
WF590,7, and WF590–598,8, located within the yellow edge region
(550–650 nm). This region is primarily characterized by the overlapping
absorption of various pigments, particularly chlorophyll and anthocy-
anin, indicating pigment dynamics associated with early disease
response.

Starting from DAI 12, responding WFs included WF469–473,3,
WF465–469,4, WF461–469,6, WF461–469,7, WF461–477,8, and WF506–510,8,
located in the blue region (450–550 nm), primarily governed by chlo-
rophyll absorption. Furthermore, theWF735,3, WF735,4, andWF735,5 were
located in the red edge region (700–750 nm), demonstrating sensitivity
to rapid photosynthetic rate changes. From DAI 15, the WF821,5,

positioned in the near-infrared region and indicative of sensitive plant
structure, began to show a significant difference between the infected
and healthy areas. These findings imply a broader impact of the disease,
associated with progressive changes in chlorophyll content, photosyn-
thetic efficiency, and plant structural integrity.

After conducting a multicollinearity diagnosis using RL, five repre-
sentative wavelet features (WF494,5, WF461,6, WF469,7, WF548,8, and
WF590,8) were selected (Fig. 10). The trends exhibited by WF494,4,
WF461,6 and WF469,7 were consistent, displaying a steady increase from
DAI 0 to DAI 30 in both infected and healthy areas, with the changes in
the infected plots consistently occurring at a faster rate. Conversely, the
changes of WF548,8 and WF590,8 in infected areas consistently preceded
those in the healthy areas. The observed trends in WFs displayed noisy
and discontinuous patterns, particularly in the early stages of disease
development. This suggests that while WFs responded rapidly to the
onset of disease, their stability remains uncertain during the early stage
of infection.

3.2. Importance of identified features

According to our experimental trials, we identified 11 key features
characterized by high information entropy and low collinearity. Our RL
agent meticulously selected these features, ensuring an optimal balance
between information richness and feature independence. These included
10 spectral-based features, 5 VIs and 5 WFs, and a biophysical param-
eter, namely, Cab. These selected features were utilized as predictors in
the final classification model for maize resistance.

The importance of the chosen features in identifying infected and
healthy areas during various disease stages is shown in Fig. 11a–c. At the
early disease stage, Cab emerged as the feature with the highest impor-
tance scores in models discriminating between infected and healthy
areas, followed by PRIn and PRSI. These features also showed high
importance at the mild and severe disease stages. VARI2, PRSI, and PRIn
demonstrated the highest importance scores in models regressing
different levels of severity, as illustrated in Fig. 11d. Notably, VARI2
displayed a negative relationship with disease severity. At the same
time, PRSI and PRIn exhibited a positive correlation.

3.3. Regression models for quantifying DI

The performances of RF and GBDT regression algorithms for esti-
mating the DI of maize leaf spot, utilizing hyperspectral features in 2022
(DAI 30) and 2021 (DAI 31), are presented in Fig. 12 and Fig. 13,
respectively. In 2022, the RF model exhibited an R2 ranging from 0.51 to
0.62. The GBDT algorithm displayed comparable performance, with an
R2 between 0.71 and 0.79. For the GBDT model, RMSE values ranged
from 0.12 to 0.15, and MAE values varied from 0.10 to 0.12. In contrast,
the RF model with R2 values from 0.59 to 0.63 in 2021, while the GBDT
model’s R2 spanned from 0.67 to 0.74. The RFmodel reported RMSE and
MAE values from 0.12 to 0.17 and 0.10 to 0.14, respectively, whereas
the GBDT model exhibited RMSE values between 0.08 and 0.12 and
MAE from 0.07 to 0.10. Optimal performance in both models and years
was achieved using spectral features. These results demonstrate a
redundancy in integrating biophysical parameters and spectral features
for monitoring disease at the initial severe stages.

3.4. Classification models for assessing maize resistance

The resistant and susceptible classification models using hyper-
spectral imagery from different time points in 2022 demonstrated
varying levels of OA and kappa (Fig. 14; Table S6–S7). OA ranged from
56.16 % to 86.21 %, and kappa values ranged from 0.39 to 0.76. The
models exhibited varying accuracy patterns based on three distinct sets
of hyperspectral features. DAI 12 and 37 notably enhanced OA and
kappa when integrating biophysical parameters with WFs and VIs.
Omitting the Cab decreased OA by up to 3.45 % and 2.96%, respectively.

Table 5
Response time of vegetation indices (VIs).

Response time VIs

DAI 2 − -
DAI 4 − -
DAI 6 − -
DAI 8 PRIn
DAI 10 − -
DAI 12 PSRI, PRI515, PRIM3, PRIM4, B, G, R, RGI, CUR, VARI, VARI2, ARIm
DAI 15 NDVI, LIC1, SIPI, PSND
DAI 22 OSAVI, TCARI
DAI 24 SPRI, NPQI, NPCI, CTRI, PRI, PRIM1, PRIM2, BRI1, BRI2, LIC2, HI
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Furthermore, removing Cab and WFs led to additional reductions in OA
by up to 9.36 % and 8.87 %, respectively. A decline in this trend was
observed at DAI 15. At DAI 22 and 30, the classification models using
different feature sets achieved a balanced and best performance, with no
significant differences observed among the three cases of features used,
with the best precision obtained by combining WFs and VIs.

The 2021 data presented an OA range of 65.31 % to 85.71 % and
kappa values from 0.42 to 0.74 (Fig. 15; Table S8–S9). DAI 31 achieved
the peak level of accuracy in the study. Paralleling the 2022 findings,
DAI 37 of 2021 also exhibited superior OA and kappa when using BSF.
The exclusion of the Cab feature led to a 5.10 % reduction in OA, while
excluding both the Cab and WFs resulted in further OA drops of a
maximum of 7.14 %. By DAI 18, the once pronounced complementary
strengths of the three feature types began to moderate, and by DAI 25
and DAI 31, this trend disappeared entirely.

4. Discussion

4.1. Sensitivity of normalized features for plant-pathogen interaction

Our results revealed that the normalized features response to leaf
spot disease infection display varying temporal dynamics and ampli-
tude. This expected behavior can be attributed to the sensitivity of

individual features to specific plant adaptation mechanisms, including
functional, biochemical, or structural changes brought on by disease
infection refer to a review on this topic (Hernandez-Clemente et al.,
2019). Notably, we observed a dual response from ΔCab. An initial slow,
short-term increase was observed in response to maize growth and
exacerbation of leaf spot disease, followed by a longer-term decrease
under sustained leaf spot disease infection. Conversely, the ΔPRIn
exhibited an immediate increase but did not decrease over time. This
complex interplay of features responses to leaf spot disease at canopy
scales, operating at different time scales, is why models struggle with
cross-temporal application.

In fact, fromDAI 6 to DAI 10, scattered lesions were already visible to
the naked eye while maize was still at the growth stage (tassel). Our
results showed that the Cab, retrieved by the radiative transfer model,
indicates a slight separation of infected and healthy canopies. It suggests
slightly slower chlorophyll accumulation and limited growth rates in the
infected areas. In addition, an increase of PRIn in the infected area could
be driven by physiological changes, likely signifying a slight reduction of
stomatal aperture compared to the healthy area. The yellow edge region
wavelet features (WF586,6, WF590,7, and WF590–598,8) as remote sensing
proxy sensitive to various pigment variations like Cab and Anth. Notably,
the ΔWF598,8 time series showed differences in DAI 6 between infected
and healthy areas, indicating pigment dynamics due to plant response to
leaf spot disease. These dynamics of features support the idea that plants
could have reacted physiologically and biochemically to the evolving
leaf spot infection at the early stages.

From DAI 12, scattered lesions began extending into contiguous ones
as the maize entered the reproductive stage (silking). More features
began responding to the leaf spot disease infection. For instance, the
PRIM4, a proxy for short-term changes in photosynthetic activity and less
sensitivity to structural effects, showed a larger reduction in infected
than healthy areas. Higher changes of CUR in infected areas than in
healthy areas could be due to the physiological impacts and changes in
chlorophyll fluorescence. The PSDN showed a decline in both infected
and healthy areas but a more pronounced decrease in the infected area,
indicating a quicker rate of plant senescence. Additionally, blue region

Fig. 9. Changes of selected vegetation indices (VIs) in infected (n = 72 samples) and healthy areas (n = 72 samples) on different DAIs. The error bars represent the
95 % confidence interval, and the values included represent the effect size, as determined by Cohen’s d.

Table 6
Response time of wavelet features (WFs).

Response
time

WFs

DAI 4 − -
DAI 6 WF586,6, WF590,7, WF590–598,8

DAI 8 − -
DAI 10 − -
DAI 12 WF469–473,3, WF735,3, WF465–469,4, WF735,4, WF465,5, WF735,5,

WF461–469,6, WF461–469,7, WF461–477,8, WF506–510,8

DAI 15 WF477–486,3, WF473–486,4, WF469–481,5, WF821,5, WF473,6,
WF510–515,6, WF502–510,7, WF481–502,8
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wavelet features and red edge region wavelet features (WF735,3, WF735,4,
and WF735,5) showed notable differences between leaf spot infected and
healthy canopies. The blue region is related to pigment degradation,

while the red edge region is sensitive to chlorophyll concentration and
quick photosynthetic rate changes (Carter and Knapp, 2001; Hernández-
Clemente et al., 2016).

Fig. 10. Changes of selected wavelet features (WFs) in infected (n = 72 samples) and healthy areas (n = 72 samples) on different DAIs. The error bars represent the
95 % confidence interval, and the values included represent the effect size, as determined by Cohen’s d.

Fig. 11. Feature importance ranking by SHAP value. (a)–(c) represents SHAP value when classifying infected and healthy areas at each leaf spot disease stage: (a)
early infection, (b) mild infection, and (c) severe infection. (d) depicts SHAP value when regressing infected plots from DAI 0 to DAI 30 with increasing maize leaf
spot disease. The feature importance is ordered along the y-axis, and the contributions of features (SHAP value) to the model are on the x-axis. Positive SHAP values
refer to a more severe leaf spot disease.
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Contrasting with prior research, our findings provide analytical
insight into the biophysical and spectral feature responses throughout
the progression of leaf spot infection. While several of our observations
align with prior studies, some findings diverge. Interestingly, none of the
spectral reflectance features demonstrated significant continuous
changes in response to the disease over the observation period. How-
ever, several studies have identified the green, red, and near-infrared
spectral regions as sensitive to various plant diseases (Bauriegel et al.,
2011; Garcia-Ruiz et al., 2013; Huang et al., 2012). Both results seem to
contradict but can be explained by the susceptibility and instability of

spectral reflectance to environmental factors at different time scales. To
our knowledge, this is the first time that the stability of spectral reflec-
tance in disease monitoring under natural conditions has been experi-
mentally verified using canopy time-series data.

Displaying the changes in biophysical parameters, spectral reflec-
tance, VIs, and WFs is crucial for understanding the disease dynamics
comprehensively. This comprehensive understanding is fundamental for
improving disease monitoring strategies. In practical terms, it is essen-
tial to select features that show a consistent response to disease for
effective monitoring tasks. Specifically, for early-stage disease

Fig. 12. Scatter plots between the measured DIs and the best estimated DIs by RF (upper) and GBDT (bottom) in 2022. The models were trained on different sets of
features: (a) and (d) utilize biophysical parameters in combination with spectral features (BSF), (b) and (e) rely on spectral features, including wavelet features and
vegetation indices (SF), and (c) and (f) focus on vegetation indices alone (VI), respectively.

Fig. 13. Scatter plots between the measured DIs and the best estimated DIs by RF (upper) and GBDT (bottom) in 2021. The models were trained on different sets of
features: (a) and (d) utilize biophysical parameters in combination with spectral features (BSF), (b) and (e) rely on spectral features, including wavelet features and
vegetation indices (SF), and (c) and (f) focus on vegetation indices alone (VI), respectively.
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monitoring, features that respond before DAI 10 should be prioritized.
For mild-stage monitoring, features that respond before DAI 15 should
be selected. For severe stage monitoring, choosing features that exhibit
continuous and stable responses is important.

4.2. Performance of hyperspectral features

The ranking of feature importance provides insights into the ability
of each feature to distinguish between healthy and infected areas. The
Cab and PRSI consistently stand out as the most influential features
throughout every stage of infection. Their prominent SHAP values un-
derscore their essential role in differentiating between healthy and
infected maize areas. As infection severity escalates, there is a notable
reduction in chlorophyll concentration, aligning with patterns of decline
observed in other stress experiments conducted under controlled con-
ditions (Damm et al., 2022; Hornero et al., 2021) and field surveys
(Camarero et al., 2012). Notable, the importance of PRSI even exceeded
Cab, reinforcing its utility as a sensitive index to variations in pigment
composition, including Cab and Car. Additionally, VIs such as NDVI,
PRIn, RGI, and VARI2 gain increased importance in severe infection,
indicating their potential to reflect compounded stress impacts on plant
physiology as the disease advances.

The performances of our maize resistance classification models
demonstrated both complementarity and redundancy among the bio-
physical parameters and spectral features. These diverse spectral fea-
tures exhibited complementary information at the early stages of disease
infection, improving accuracy when integrated. Specifically, models
incorporating Cab, VIs, and WFs outperformed models that solely relied
on spectral features or VIs, with a maximum OA difference of 9.36 %.
This finding highlighted the added value of integrating different types of
features during the early disease stages (Poblete et al., 2021; Zarco-
Tejada et al., 2018). However, as the disease progressed, the comple-
mentarity of these features gradually diminished, indicating a redun-
dancy of information at the mild and initial severe disease stages. This
observation aligns with previous studies that have reported that a
reduced set of selected features can achieve optimal results in disease
classification models (Poblete et al., 2020; Wang et al., 2019).

Our study provided a novel explanation for this contradiction. The
complementary advantages of multiple features are effective for moni-
toring challenges during the early stages of disease classification and the
latter part of the severe stage when disease intersects with crop senes-
cence. As the disease becomes more distinguishable at the mild and
initial severe stages, the classification difficulty decreases, leading to the
emergence of redundant properties among the different features. This
understanding of the contradictory nature of the influence of multiple
features on disease classification models contributes to further research.

In addition, the performance of classification models showed
inconsistency. At the early stages of the disease (DAI 12), the models
performed very well in identifying the resistant genotypes, but they
struggled to correctly identify susceptible genotypes, resulting in high
precision and lower recall. This is because the susceptible genotype
showed weak symptoms, making it easy to misclassify as resistant.
Conversely, in the severe stages of the disease (DAI 37), the models
exhibited high recall but lower precision. This indicates that while the
models could successfully identify susceptible genotypes, they mistak-
enly classified some resistant genotypes as susceptible. This is because
the susceptible genotype undergoes accelerated senescence as maize was
in the mid-milk stage, making it easier to identify with high recall.
Meanwhile, resistant genotypes also showed signs of senescence and
were easily misclassified as susceptible, leading to lower precision.

4.3. Limitations of this study

The findings of this study, substantiated by numerous field experi-
ments, leave open questions regarding their applicability to other maize
leaf diseases. However, maize is also susceptible to other foliar diseases

Fig. 14. Performances of classification models in 2022. Overall accuracy (bars)
and Kappa (bullets) metrics of RF and GBDT algorithms classifying maize plants
resistant to leaf spot disease from susceptible. The models were trained using
biophysical parameters in combination with spectral features (BSF), spectral
features including wavelet features and vegetation indices (SF), and vegetation
indices alone (VI), respectively. The models used hyperspectral imageries from
DAI 12, DAI 15, DAI 22, DAI 30, and DAI 37, 2022, respectively.

Fig. 15. Performances of classification models performance in 2021. Overall
accuracy (bars) and Kappa (bullets) metrics of RF and GBDT algorithms clas-
sifying maize plants resistant to leaf spot disease from susceptible. The models
were trained using biophysical parameters in combination with spectral fea-
tures (BSF), spectral features including wavelet features and vegetation indices
(SF), and vegetation indices alone (VI), respectively. The models used hyper-
spectral imageries from DAI 12, DAI 15, DAI 22, DAI 30, and DAI 37, 2021,
respectively.
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such as rust, blight, and anthracnose. The potential applicability of our
findings to these additional diseases has not been studied and necessi-
tates further research. Additionally, the specificity of the identified
features in distinguishing between different diseases must be confirmed
in future studies.

The mismatch between field survey data and remote sensing data has
always been a source of uncertainty in disease monitoring. To address
this, multi-scale analysis should be employed to analyze the disconnect
between various scales and explore the factors causing this disconnect.
Moreover, the current methodology of evaluating maize resistance
through subjective assessment by researchers introduces potential bia-
ses. To address this, future work should consider the adoption of auto-
mated image analysis algorithms. Such technological advancements
promise a more objective and practical approach to quantifying disease
impact on leaf tissue, substantially diminishing subjectivity and
bolstering the efficacy of monitoring processes for crop resistance.

5. Conclusion

Hyperspectral technology provides diverse avenues to explore plant-
pathogen relationships on large scales, yet the complexity of leaf spot-
associated plant responses remains a significant problem. This study
develops a systematic approach for identifying hyperspectral features
sensitive to leaf spot disease. Our experimental results illustrate that
temporal response analysis enables the analysis of inherent spectral
characteristics of plants and pathogens. We conclude that canopy-
derived Cab, PRIn, and PRSI are significant features at all leaf spot dis-
ease infection stages. The effectiveness of our classification models
highlights the complementary information from biophysical and
spectral-based features during the early and severe disease infection
stages, suggesting the information redundancy at the mild and initial
severe stages of disease infection. This conflict was confirmed for the
first time through continuous observation data collection. Our research
methodology and the important features derived from this study could
guide other disease monitoring research.
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Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature
and narrow-band indices acquired from a UAV platform for water stress detection
using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ.
117, 322–337.

Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernandez-
Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-
Dugo, V., North, P.R.J., Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A.,
2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-
trait alterations. Nat. Plants 4, 432–439.

Zhou, L., Nie, C., Su, T., Xu, X., Song, Y., Yin, D., Liu, S., Liu, Y., Bai, Y., Jia, X., Jin, X.,
2023. Evaluating the canopy chlorophyll density of maize at the whole growth stage
based on multi-scale UAV image feature fusion and machine learning methods.
Agriculture 13, 895.

Y. Bai et al.

http://refhub.elsevier.com/S0168-1699(24)00741-5/h0115
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0115
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0115
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0120
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0120
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0120
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0125
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0125
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0125
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0130
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0130
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0130
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0135
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0135
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0135
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0140
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0140
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0140
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0145
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0145
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0145
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0150
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0150
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0150
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0150
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0150
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0155
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0155
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0155
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0155
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0160
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0160
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0160
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0165
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0165
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0165
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0165
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0170
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0170
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0170
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0175
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0175
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0180
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0180
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0185
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0185
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0185
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0185
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0190
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0190
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0190
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0190
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0190
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0195
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0195
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0195
http://refhub.elsevier.com/S0168-1699(24)00741-5/h0195

	Comprehensive analysis of hyperspectral features for monitoring canopy maize leaf spot disease
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 Field surveys
	2.3 Hyperspectral images collection and preprocessing
	2.4 Feature extraction
	2.4.1 Spectral features
	2.4.2 Biophysical parameters

	2.5 Feature analysis
	2.5.1 Response time analysis
	2.5.2 Collinearity diagnostics

	2.6 Feature evaluation
	2.6.1 Feature importance
	2.6.2 Machine learning models


	3 Results
	3.1 Temporal response of features after leaf spot infection
	3.1.1 Biophysical parameters
	3.1.2 Spectral reflectance
	3.1.3 VIs
	3.1.4 WFs

	3.2 Importance of identified features
	3.3 Regression models for quantifying DI
	3.4 Classification models for assessing maize resistance

	4 Discussion
	4.1 Sensitivity of normalized features for plant-pathogen interaction
	4.2 Performance of hyperspectral features
	4.3 Limitations of this study

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A Supplementary data
	References


