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Summary
Dissecting the genetic basis of complex traits such as dynamic growth and yield potential is a

major challenge in crops. Monitoring the growth throughout growing season in a large wheat

population to uncover the temporal genetic controls for plant growth and yield-related traits has

so far not been explored. In this study, a diverse wheat panel composed of 288 lines was

monitored by a non-invasive and high-throughput phenotyping platform to collect growth traits

from seedling to grain filling stage and their relationship with yield-related traits was further

explored. Whole genome re-sequencing of the panel provided 12.64 million markers for a high-

resolution genome-wide association analysis using 190 image-based traits and 17 agronomic

traits. A total of 8327 marker-trait associations were detected and clustered into 1605

quantitative trait loci (QTLs) including a number of known genes or QTLs. We identified 277

pleiotropic QTLs controlling multiple traits at different growth stages which revealed temporal

dynamics of QTLs action on plant development and yield production in wheat. A candidate gene

related to plant growth that was detected by image traits was further validated. Particularly, our

study demonstrated that the yield-related traits are largely predictable using models developed

based on i-traits and provide possibility for high-throughput early selection, thus to accelerate

breeding process. Our study explored the genetic architecture of growth and yield-related traits

by combining high-throughput phenotyping and genotyping, which further unravelled the

complex and stage-specific contributions of genetic loci to optimize growth and yield in wheat.

Introduction

Allohexaploid bread wheat (Triticum aestivum L., 2n= 6x= 42,

AABBDD) is one of the most important crops around the world,

providing more than 20% of the calories and protein consumed

by humans (FAO, 2020). Although significant progress has been

made in wheat breeding programs to improve important

agronomic traits (Gao et al., 2017), enormous efforts are still

needed to fill the gap between population growth and wheat

production (Tester and Langridge, 2010). A number of studies in

crops indicated that yield is affected by early plant growth and

biomass accumulation (DeWitt et al., 2021; Gowda et al., 2011;

Nadolska-Orczyk et al., 2017). Therefore, understanding the

genetic basis for wheat growth and yield potential is of significant

importance for breeding practice.

In the last decades, genes associated with specific traits such as

plant height (Rht1 and Rht8), vernalization (Vrn1, Vrn2, Vrn3),

spikelets number (FRIZZY PANICLE) and spike architecture

(TaCOL-B5) have been identified and functionally studied through

positional cloning in wheat (Dobrovolskaya et al., 2015; Pearce

et al., 2011; Xiong et al., 2022; Yan et al., 2003, 2006; Zhang

et al., 2022). More recently, a number of QTLs were identified

through genome-wide association studies (GWAS) with limited

markers and a few easy-to-measure traits collected at a particular

growth stage (Cao et al., 2020; Jamil et al., 2019; Pang

et al., 2020). While sequencing technologies have provided

almost unlimited high-density genetic markers, rapid and

accurate phenotyping in a large-scale manner remains a

major constraint for genetic studies (Yang et al., 2014). High-

throughput phenotyping platform (HTP), equipped with non-

Please cite this article as: Gao, J., Hu, X., Gao, C., Chen, G., Feng, H., Jia, Z., Zhao, P., Yu, H., Li, H., Geng, Z., Fu, J., Zhang, J., Cheng, Y., Yang, B., Pang, Z.,

Xiang, D., Jia, J., Su, H., Mao, H., Lan, C., Chen, W., Yan, W., Gao, L., Yang, W. and Li, Q. (2023) Deciphering genetic basis of developmental and agronomic traits

by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. Plant Biotechnol. J., https://doi.org/10.1111/pbi.14104.

ª 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

1

Plant Biotechnology Journal (2023), pp. 1–12 doi: 10.1111/pbi.14104



invasive technologies, offers an opportunity to capture growth

traits at multiple developmental stages to address the phenotyp-

ing bottleneck and uncover temporal genetic controls underlying

plant development or stress adaptation (Watt et al., 2020). The

integration of genomics and phenomics has been applied to

dissect the genetic basis of complex traits in rice (Yang

et al., 2014), cotton (Li et al., 2020a), rapeseed (Li et al.,

2020b) and maize (Wu et al., 2021; Zhang et al., 2017). In wheat,

a study monitored 12 growth traits of 208 recombinant inbred

lines (RILs) through HTP, only found a few QTLs with major effects

due to low marker density and small population size (Camargo

et al., 2018).

Plant growth is a dynamic and complicated process controlled

by several genes/QTLs and determines biomass and yield traits

(Knoch et al., 2020; Li et al., 2020b; Würschum et al., 2014;

Zhang et al., 2017). Non-invasive and imaging-based phenotyp-

ing platform provides the opportunity to link plant growth with

yield. A number of marker-trait associations and QTLs for biomass

and growth-related traits were detected through GWAS using

data collected from multiple time points during early growth of

rapeseed seedlings (Knoch et al., 2020; Li et al., 2020b). So far,

most studies in wheat have focused on either yield traits or

growth traits at a particular developmental stage (Pang et al.,

2020; Watt et al., 2020). However, the yield potential and plant

growth dynamics are both complex traits controlled by numerous

genes/QTLs, and most of them only hold small or medium effects.

Our knowledge of what these factors are and how they are

genetically and temporally controlled in a stage-specific manner is

largely unknown.

In this study, we performed whole genome re-sequencing

of 288 elite wheat lines representing a wide genetic and

geographical diversity and collected the dynamic growth traits

of each accession from seedling to mature stage using the high-

throughput phenotyping platform. We conducted GWAS and

investigated the relationship between image-based traits (i-traits)

and agronomic traits. 52 pleiotropic QTLs affecting both i-traits

and agronomic traits were detected, suggesting a strong link

between those two classes of traits. A number of growth-related

candidate genes were identified in the i-trait QTLs including

known genes involved in plant growth and development. A novel

gene involved in regulating plant growth and yield traits was

further validated through mutant analyses. Prediction models

derived using i-traits from earlier growth stages largely increased

the prediction accuracy for final yield traits. This study highlights

the importance of i-traits in capturing temporal growth patterns

to unravel the complex genetics of growth and yield in wheat.

Results

Genetic diversity and population structure of wheat
germplasm collection

In this study, a total of 288 wheat lines with wide genomic

diversity were selected for whole genome re-sequencing (Data

S1). In order to obtain high-density markers, we generated 11.19

Tb of high-quality reads from these accessions. A total of 12.18

million single nucleotide polymorphisms (SNPs) and 0.46 million

insertion–deletion (InDel) markers were obtained (Data S2). There

were 5.13, 6.34 and 1.17 million markers on A, B and D subgenome

(Figure 1a; Data S2). An average of 601 858 polymorphic markers

was identified per chromosome, and these markers were enriched

towards the chromosome ends. Among these markers, 163 362

(1.29%) were located in gene body, 17 909 (0.14%) were located

Figure 1 Whole genome re-sequencing, genetic diversity and population structure of the wheat association panel. (a) Circular diagram showing genomic

diversity of the association panel. The tracks on the plot represent different genomic features: A, Chromosome name and size; B, Density of gene models;

C, Density of SNP markers; D, Density of InDels; E, Average nucleotide diversity (Pi) at variable sites within a sliding window of 1Mb; F, Neutrality test

statistics (Tajima’s D) at variable sites within a sliding window of 1Mb. (b) Principal component analysis of 288 accessions. Proportions of explained variance

of principal components (PCs) 1 and 2 are indicated on the axes. Different colours represent geographical origin of wheat lines. (c) Neighbour-jointing tree

analysis for the association panel. (d) Heatmap of pairwise kinship matrix. (e) Linkage disequilibrium (LD) decay for the whole genome and A, B and D

subgenomes. Decay curves of A, B, D and whole genome were presented in squared correlation of allele frequencies at diallelic loci (r2).
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in untranslated region, and the remaining 12 469 974 (98.66%)

were located in intergenic regions (Data S2). Notably, 0.27% of

markers located in exon led to 34 527 non-synonymous mutations.

Principal component analysis (PCA) showed moderate variation

with PC1 (19.18%), PC2 (15.10%) and PC3 (13.40%). Biplots

showed that accessions from different geographical origin were

apart from each other and landraces were generally separated

from modern varieties (Figures 1b and S1). The neighbour joining

tree generated similar results (Figure 1c). In consistent, majority of

wheat lines were unrelated to each other (Figure 1d). Admixture

analysis showed the cross-validation error dropped dramatically

when K value increased from 1 to 9 and then stabilized

(Figure S2). Thus, these results suggested a high genetic diversity

of the population.

All markers were used to calculate genome-wide mean linkage

disequilibrium (LD). The LD statistic r2 was used to estimate LD in

sliding window size of 20Mb for each of the 21 chromosomes

(Figure 1e). Consistent with previous study (Pang et al., 2020), the

faster LD decays in B and D subgenome compared to A

subgenome might be related to their independent evolutionary

history and different selection pressure during domestication and

modern breeding among three subgenomes.

High-throughput phenotyping of the wheat association
panel

To obtain the dynamic growth traits and yield-related traits, the

wheat accessions were cultivated under greenhouse conditions

with three biological replicates for each line (Figures 2a and S3).

Employing an automated and high-throughput phenotyping

platform (HTP) (Yang et al., 2014), the dynamic growth pattern

of each individual plant was monitored using optical cameras at

six growing stages covering seedling (S1), early tillering (S2), late

tillering (S3), stem elongation (S4), heading (S5) and grain filling

(S6) stages. Six side-view pictures were taken for each plant at

different development stage, generating 31 104 images in total.

A total of 78 morphological and 108 texture image-based traits (i-

traits) were extracted from the side-view pictures (Figure 2b;

Data S3). Four growth parameters were derived from exponential

models for H (height of the bounding rectangle) and TPA (total

projected area; Data S4). Moreover, 17 yield-related agronomic

traits were measured, including spike length (SL), kernel number

per spike (KN), thousand kernel weight (TKW), biomass, etc

(Figure 2c; Data S5).

Image traits changed dramatically along the plant development

and were grouped into four clusters according to their dynamic

patterns (Figure 2b). Six i-traits including five texture traits for

grey and gradient homogeneity of pixels (T1, T12, T7, T14,

U_TEX) and green projected area ratio (GPAR) were at high levels

from seedling to heading stages (S1-S5) but dropped dramatically

at the last stage which coincides with the leaf senescence at

maturation. On the contrary, four i-traits including PAR (the ratio

of perimeter and total projected area), T8, T3 and T15 only

showed higher levels at S1, and steady decreased from S2 to S6.

The values of five i-traits including F (fraction dimension), THR (the

ratio of total projected area and hull area), TBR (the ratio of total

projected area and circumscribed box area) and W (width of the

bounding rectangle) gradually increased along plant develop-

ment. The largest cluster has 16 i-traits including GPA (green

Figure 2 Phenotype diversity of the association panel. (a) Representative side-view images of wheat at six growth stages. Each individual plant was

monitored using optical cameras at 44 days after sown (DAS) (S1, seedling), 57 DAS (S2, early tillering), 71 DAS (S3, late tillering), 84 DAS (S4, stem

elongation), 120 DAS (S5, heading) and 180 DAS (S6, grain filling). (b) Clustering analysis of 31 image traits (i-traits) captured at six growth stages. Normalized

values of i-traits were clustered into four distinct groups. (c) Heatmap of 17 agronomic traits. The agronomic traits were clustered into five groups. (d)

Heatmap of broad-sense heritability (H2) for 186 i-traits and 17 agronomic traits. The i-traits were presented from S6 to S1 towards the centre of circle. (e)

Heatmap of coefficient of variation (CV) for 186 i-traits and 17 agronomic traits. The i-traits were presented from S6 to S1 towards the centre of circle.
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projected area), TPA (total projected area) and H (height of the

bounding rectangle) which are good indicators of plant growth.

These results solidly supported that i-traits could reflect the

variable growth pattern of wheat.

To compare the phenotypic variation and heritability among

the accessions, we assessed coefficient of variation (CV) and

broad-sense heritability (H2) for 186 i-traits and 17 agronomic

traits (Figure 2d,e). The 186 i-traits were composed of 31 i-traits

measured at each of the six growth stages (S1 to S6). In general,

the morphological i-traits such as TPA, HA (hull area) and GPA

were more variable. About 56% of i-traits and 41% of agronomic

traits showed a H2 greater than 0.85 (Data S6). The yield

component traits, including spike weight per plant (SWP), grain

yield (GY), biomass (BM), kernel number per plant (KNP) and

spikelets number per plant (SpNP), showed lower level of H2,

which suggested that they were complex traits controlled by

numerous loci with small effect. In general, i-traits showed higher

level of variation and heritability, which could be more preferable

in GWAS analysis.

Consistent with previous studies in other crops (Knoch

et al., 2020; Li et al., 2020b; Muraya et al., 2017; Yang et al.,

2014; Zhang et al., 2017), we observed significant correlations

between i-traits and agronomic traits including PH (plant height),

StW (straw weight) and other yield component traits (Figure S4;

Data S7). Straw weight (StW) was highly correlated with 5 i-traits

including plant size indicators, TPA_S6 and HA_S6 (R> 0.6; P-

value <0.01). Biomass (BM) was also significantly correlated with

TPA_S6. Different from StW and BM, which were correlated with

i-traits detected at S6, tiller number (TN) was highly related with i-

traits detected at early stages such as indicators for plant

compactness, THR_S2, TBR_S2 and TBR_S3. In summary, 78 i-

traits were significantly correlated (R> 0.3 or<�0.3, P-value-

<0.01) with 12 yield-related traits (Data S7).

Genome-wide association analysis and candidate gene
identification

To elucidate the genetic basis of phenotype variation, we

performed genome-wide association analysis using 207 traits

and 12.64 million markers. A total of 8327 marker-trait

associations (MTAs) were detected for 174 traits (P-value <1E-7)

(Figure 3a; Data S8). These markers were clustered into 1605 QTLs

by defined LD blocks (r2< 0.5). In total, 136 QTLs for agronomic

traits and 1469 QTLs for i-traits were detected (Figure 3a,b), of

which, 384 QTLs were co-localized with previously reported QTLs

in wheat (Data S9). Notably, 346 unique QTLs for 118 i-traits

collected at during plant development were co-localized with

reported QTLs for yield, thousand kernel weight (TKW), grain

weight (GW), etc. A number of known genes (e.g. Vrn1-5A, Rht8,

Ppd-D1) were identified in these QTLs (Figure 3a; Data S9).

The 1605 QTLs were unevenly distributed among the A, B and

D subgenomes, with 567 on the A subgenome, 687 on the B

subgenome and 351 on the D subgenome (Data S8). The QTLs for

each agronomic trait ranged from one for TN (tiller number) to 35

for PH (plant height), whereas this number ranged from one for

F_S6 to 79 for YPAR_S2 for i-traits (Figure 3c; Data S8).

Importantly, 1085 (67.6%) of 1605 QTLs spanned on intervals

less than 1Mb (Figure S5). 33 QTLs were identified with each

explained more than 20% phenotypic variation (PVE), including 4

QTLs for agronomic traits and 29 QTLs for image traits (Data S8).

More QTLs were detected for i-traits than agronomic traits,

especially for those with larger PVE, suggesting that i-traits are

more stable and effective for GWAS.

A total of 6856 candidate genes were identified in the QTLs

regions, including 1317 genes for agronomic traits and 5880

genes for i-traits (Data S10). Candidate genes were further

annotated by taking their rice orthologs as reference (Kawahara

et al., 2013). A number of them were involved in meristem

development and hormone metabolism, such as Vrn1-5A

(TraesCS5A03G0935400), Vrn3-7A (TraesCS7A03G0272100),

Vrn1-5D (TraesCS5D03G0894800), TaAGL11 (TraesCS6B03G0

969600) (Data S10). SNP annotation showed that 36 genes

harbour 50 non-synonymous mutation or nonsense mutations.

These genes were selected as candidate genes with particular

interests (Data S11). For example, one SNP (P-value= 8.62E-07)

causing missense mutation was identified in TraesCS6B03G010

5200 for P_S6 (perimeter of plant at stage S6), an indicator of

plant size and biomass (Data S11). TraesCS6B03G0105200

encodes a high-affinity nitrate transporter (NRT) (O’Brien

et al., 2016; Ohkubo et al., 2021; Shi et al., 2022), thus

suggesting its involvement in nitrogen uptake and biomass

accumulation. Although further investigation and validation of

candidate genes is required, this study indicated that the time-

series characteristics of i-traits depicting the growth dynamics

allowed for functional mapping of dynamic QTLs underlying plant

development.

Temporal dynamics of QTLs action on plant growth and
yield in wheat

A number of genetic studies have found evidence for QTLs with

pleiotropic effects which affects multiple traits (Cui et al., 2016;

Fan et al., 2019). We investigated the overlapping regions of QTLs

detected for individual traits and identified a total of 277

pleiotropic QTLs including 7 for agronomic traits, 218 for image

traits and 52 for both agronomic and image traits (Data S12). A

trait-QTLs network was constructed, and two hub QTLs, QTL168

and QTL171, were revealed (Figure S6). QTL168 was detected for

50 i-traits while QTL171 was detected for 41 i-traits, suggesting a

major genetic loci controlling multiple traits. We further

investigated the pleiotropic QTLs associated with both agronomic

and image traits (Figure S7). For example, three QTLs were

commonly detected for StW (straw weight) and P_S6 (perimeter

at S6) which was consistent with the high correlation (R= 0.62)

between the two traits. The pleiotropic QTLs for both agronomic

and image traits thus approved the linkage between the two

types of traits.

A total of 171, 259, 243, 206, 347 and 174 QTLs were

identified at S1, S2, S3, S4, S5 and S6 stage, respectively (Data S8).

We specifically investigated the dynamic changes of QTLs for 31 i-

traits at multiple stages (Figure 3b). Different number and

genomic position of QTLs were detected for each of the 31 i-

traits at the six growth stages (Figure 3b,d; Data S8), indicating the

dynamics of QTLs in regulating the developmental behaviour of

these quantitative traits. Of the 1469 image QTLs, 260, 90 and 45

QTLs were detected at two, three or four stages, respectively.

Interestingly, 126 of them were located at three positions

(QTL168, QTL170 and QTL171) on chromosome 5D (Figure S6),

which were also classified as pleiotropic QTLs based on their

association with multiple traits. QTL168 is associated with 50 i-

traits at S1 to S5 stages and a candidate gene Vrn1-5D (also called

Vrn-D1), which promotes heading and flowering dates in wheat

(Zhang et al., 2012, 2018), is located in this region. In addition,

pleiotropic QTL139, which contains Vrn1-5A, contributes to

TBR_S3, T1_S4 and T2_S4. We genotyped Vrn1-5A, Vrn1-5B

and Vrn1-5D in the association population. Consistent with GWAS
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Figure 3 Dynamic QTLs for i-traits and agronomic traits detected by GWAS. (a) Manhattan plots for all traits measured in this study. Upper panel showed

the results from 17 agronomic traits, and lower panel represents the results from 157 i-traits. The QTLs derived by significantly associated markers were

present as sticks in the middle. QTLs for agronomic traits were shown in brown colour, and QTLs for i-traits were displayed in blue. 52 QTLs (shown in black

colour) were commonly identified by two classes of traits. (b) Dynamics of QTLs detected by individual traits at each of the six stages. Yellow dots, QTLs for

agronomic traits; blue dots, QTLs for i-traits; red dots, pleiotropic QTLs.(c) Number of QTLs detected for each of the individual traits. (d) Number of QTLs

detected at multiple growth stages. QTLs detected at one, two, three and four stages were shown in the stacked barplot as blue, brown, green and purple,

respectively.
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analysis, our results showed that lines harbouring dominant alleles

of Vrn1-5D and Vrn1-5A flower earlier than those with recessive

alleles (Figure S8; Data S13). Together, these results demonstrated

that the genetic basis of growth dynamics can be dissected and

pleiotropic QTLs are not only for static trait but also in regulating

dynamic plant development at multiple stages.

Variation in TraesCS7A03G0149400 affects both i-traits
and yield traits

QTL241 was commonly detected for 13 i-traits including TPA_S5,

F_S5 and GPA_S5 (Figure 4a). The leading SNP (SNP-47107918,

C/T) was located exactly in the second exon of TraesC-

S7A03G0149400, causing a missense mutation (Figure 4b).

Protein sequence analysis showed that TraesCS7A03G0149400

encodes a cyclin-like F-box protein (Figure S9; Hong et al., 2020;

Xu et al., 2009). Wheat lines with CC allele showed significantly

lower levels of TPA_S5 and M_TEX_S5 when compared to lines

with TT allele (Figure 4c). Besides the i-traits, the lines with CC

haplotype also showed reduced SWi (spike width) and TKW

(thousand kernel weight) in comparison with lines harbouring TT

haplotype (Figure S10). Two individual EMS mutant lines

possessing point mutations causing Ser8Phe and Pro95Ser were

Figure 4 Validation of candidate gene for QTL241 on chromosome 7A. (a) QTL241 is associated with 13 i-traits. (b) Manhattan plot of the QTL241 on

chromosome 7A. Zoom in region (from 35.32 to 35.34Mb) was shown and the non-synonymous marker SNP-47107918 was significantly associated with

i-trait TPA_S5 (P-value = 4.85E-09). The SNP is located on the second exon of TraesCS7A03G0149400 as shown in the gene model over the LD heatmap. (c)

Plants with the CC allele of SNP-47107918 showed significantly lower levels of TPA_S5 and F_S5 than those with the TT allele. (d) The side-view image of

AK58 and two individual mutants at heading stage (S5). (e) Point mutations were detected on first exon of TraesCS7A03G0149400 and conformed by

Sanger sequencing. (f) Mutants showed significantly lower levels of M_TEX_S5 and TPA_S5 than AK58. (g) Mutants showed significantly lower levels of

TKW and SWi than AK58.
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obtained and confirmed by Sanger sequencing (Figures 4d,e and

S11). We observed that the level of TPA_S5 and M_TEX_S5 were

lower in mutants than those in wild-type plants (Figure 4f). The

Tafbl-7a mutants also showed reduced SWi and TKW (Figure 4g).

Together, the results suggested a role of TraesCS7A03G0149400

in regulating plant growth traits and yield-related traits in wheat.

We further investigated the genomic sequence of TraesC-

S7A03G0149400 in the association population. Surprisingly, two

InDels, a 14 bp insertion and an 18 bp deletion, were identified in

the first exon after sequencing 15 representative lines in the CC

haplotype (Figure S12a). The two InDels in TraesC-

S7A03G0149400 cause a frameshift that creates a stop codon

(Figure S12b). We genotyped all the 288 lines with markers

developed based on the two InDels and successfully obtained

results from 242 lines with a total of 22 lines containing the two

InDels and all of them are CC genotype at SNP-47107918

(Data S14). Thus, genetic variations in gene coding region of

TraesCS7A03G0149400 influence plant growth phenotype and

yield traits. The InDel markers would be used for preferable allele

selection in wheat breeding.

Increasing prediction accuracy for yield-related traits
using image traits in wheat breeding

Different growth stages are highly correlated, and variation in

growth is linked to variation in yield production at maturity

(DeWitt et al., 2021; Gowda et al., 2011; Li et al., 2020b;

Nadolska-Orczyk et al., 2017; Zhang et al., 2017). However, using

phenotypic data obtained at the early growth stages to predict

the final yield-related trait remains a major challenge in crop

breeding. With recent advances in the non-invasive imaging

phenotyping, we are able to monitor the growth dynamics of

plants from sowing to harvest. We developed models based on i-

traits from different growth stages to predict yield-related traits

with two different methods: LASSO (Figures 5 and S13) and

random forest models (Figure S14). Both models showed superior

performance on PH (plant height), StW (straw weight) and BM

(biomass) when only i-traits measured at S6 were included

(Figures 5a and S14a), but LASSO model outperformed than RF

model on yield traits such as SL, SpN, SN, TKW, etc. Therefore,

LASSO method was selected for the following analysis.

The performance of prediction was greatly improved after

including i-traits from earlier growth stages (S1–S5). For example,

the R value for TN (tiller number) model was 0.4 when using i-

traits from S6 stage only, but it was increased to 0.71 after

including S5 and S6 stages. The value was further elevated to 0.9

when using i-traits from S4, S5 and S6 stages (Figure 5b). The

prediction accuracy for yield–related traits was also improved

when including i-traits from earlier growth stages. Correlation

coefficient between the experimental data and expected values

were generated using the best models (Figures 5c and S15;

Data S15). Our results showed that R values for TN and PH are

0.90 and 0.91, respectively. Yield traits, such as SN and GY,

showed a relatively lower prediction accuracy with R value at 0.70

and 0.51, respectively (Figure 5b).

We further identified the i-traits contributing to each of the 17

agronomic traits based on the best prediction models (Data S15;

Figure 5d). It is not surprising that more i-traits collected at later

growth stages (S4, S5 and S6) demonstrated a large contribution

of these traits to yield-related traits such as BM, PH, KW (kernel

weight), etc (Figure 5d). On the other hand, i-traits from tillering

(S2 and S3) stages also contributed to yield-related traits such as

SN, GY, KNP, SW, etc (Figure 5d). Considering that plants were

tillering at S2 and S3 stages during winter, the results suggested

an influence of winter growth on final yield production in wheat.

Together, our results indicated that i-traits collected during the

early growth stages largely improved prediction accuracy for final

yield, which allows high-throughput selection of targeted plants

at early stages thus speed up breeding process.

Discussion

Understanding the complexity of the genetic variants underlying

diversity in growth-related traits (e.g. height, width and shape) to

maximize yield production is essential in crop breeding. However,

growth traits changed dynamically as development progressed

and traditional phenotyping throughout plant development is still

a bottleneck of genetic studies. In this study, we obtained 190

image-based traits (186 i-traits and four growth parameters)

depicting plant growth-related traits and 17 traditional traits (e.g.

height, biomass and yield) in a diverse wheat population. The

observation and measurement of growth traits and yield traits in

one study allows us to dissect the underlying genetic mechanisms

of complex traits and investigate the correlation between crop

yield potential and vegetative growth.

Most of the previous GWAS studies in wheat were performed

with a few traditional traits either using small size of populations

or limited numbers of markers (Cao et al., 2020; Jamil

et al., 2019; Knoch et al., 2020; Pang et al., 2020). As a result,

a few hundreds of marker-traits associations and QTLs spanning

on a large genome regions were identified. Compared to previous

studies using less than 0.4 million markers from genotyping by

sequencing (Pang et al., 2020) or tens of thousands from SNP

chips (Würschum et al., 2014), this study generated a total of

12.64 million high-quality SNP/InDel markers using whole

genome re-sequencing of 288 wheat lines. The ultra-high-

density markers and population with high genetic diversity ensure

GWAS analysis in a high-resolution to effectively identify a larger

number of QTLs or to directly locate the causal gene. A total of

785 SNP/InDels located in the coding region of candidate genes

will facilitate the identification of the causal gene (Data S11), of

which the leading SNP (SNP-47107918) causing a missense

mutation was located exactly in the second exon of the candidate

gene TraesCS7A03G0149400. The SNP was significantly associ-

ated with 13 i-traits such as TPA and GPA values, which are

indicators for plant size. TraesCS7A03G0149400 encodes a

cyclin-like F-box protein which could serve as a protein–protein
interaction motif to recruit the substrate-recognition components

of the E3 ligase complex (Noir et al., 2015; Xu et al., 2009).

Studies have shown that cyclin-like F-box protein plays a role in

growth and development of various plant species (Xu

et al., 2009). Loss of the F-box protein FBL17 in Arabidopsis

resulted in reduced plant growth by inhibiting cell proliferation

(Noir et al., 2015). Two independent EMS mutants confirmed its

role in regulating plant development and yield production in

wheat. Furthermore, we identified two novel InDels by sequenc-

ing the genomic region of TraesCS7A03G0149400 in the

association population, which could be used as a selection

marker for wheat breeding.

Traditional studies examine a few traits once at particular

stage; however, most traits are changing dynamically along

developmental process. The dynamic regulation of QTLs during

development remains mysterious. Using non-destructive high-

throughput phenotyping platform (Yang et al., 2014), we

collected a number of novel plant growth-related traits (i-traits)
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at multiple stages that were not measurable using traditional

methods, e.g. plant compactness and green leaf area. The

growth habit of wheat is largely controlled vernalization genes

such as VERNALIZATION 1 (VRN1), VRN2 and VRN3 (Distelfeld

et al., 2009; Trevaskis et al., 2007; Yan et al., 2004). Vrn1-5A has

been shown to be associated with tiller number and prostrate

plant type in wheat (Iwaki et al., 2000; Marone et al., 2020); thus,

changes in tiller number and prostrate will probably influence the

plant type. In this study, Vrn1-5A was identified as a candidate

gene for TBR_S3, an i-trait depicting plant compactness at

tillering stage (S3). Vrn1-5D (also called Vrn-D1), which promotes

heading and flowering dates in wheat (Zhang et al., 2012, 2018),

is located in the pleiotropic QTL168 associated with 50 i-traits at

S2, S3, S4 or S5 stages. VRN3 is a close homologue to the

FLOWERING LOCUS T in Arabidopsis which promotes flowering

under long days (Yan et al., 2006). In consistent, we identified

Vrn3-7A as a candidate gene in two QTLs, qPAR_S6_7A and

qTBR_S6_7A, which were associated with PAR and TBR i-traits at

grain filling stage (S6) when days are longer in spring. These

results suggested a major role of vernalization genes in mediating

plant growth phenotype in a stage-specific manner. With the fact

that growth traits change dynamically as development progressed

and are governed by numerous loci, our study demonstrated the

dynamics of QTLs during plant development at multiple growth

stages via high-throughput phenotyping and genotyping in

wheat.

Accurate prediction of yield potential is of great significance in

crop breeding. Previous studies have shown that yield, as a

complex trait at harvest, is affected by early plant growth and

biomass accumulation (DeWitt et al., 2021; Gowda et al., 2011;

Knoch et al., 2020; Li et al., 2020b; Nadolska-Orczyk et al., 2017).

We observed that some QTLs for i-traits collected at growth

stages co-localized with QTLs for yield-related traits at harvest.

Prediction models were derived from multiple growth stages and

greatly increased the prediction accuracy for yield-related traits.

Both results indicated that earlier plant performance contributes

to final yield production. It has been proposed that genes are

selectively expressed at different growth stages and the genetic

control of development at different developmental stages

determines to the final yield (Fu et al., 2022; Zhu, 1995). How

these genetic loci are hierarchically regulated and coordinated at

different growth stages are largely unknown. We further

dissected a number of i-traits contributing to yield production

based on machine learning models. These i-traits were thus

considered as developmental modules, and their QTLs were

regarded as genetic modules that dictate crop performance and

yield. Hence, our results indicated that pleiotropy or dynamic

regulation of QTLs at multiple stages interacted with each other

may be responsible for the linkage between plant growth and

yield production. Importantly, we demonstrated that the yield-

related traits are predictable and dissectible using i-traits collected

during plant development, which provides possibility for selecting

desired trait combinations to maximize crop yield or predicting

yield potential in breeding programs.

Experimental procedures

Plant materials and growth condition

In this study, a wheat association panel with 288 inbred lines

(Data S1) was planted in the high-throughput phenotyping

platform (HTP) (Yang et al., 2014) with three biological replicates

for each line. Seeds were sown directly in pots with 4.5 kg soil on

October 25 2019, and one wheat plant was kept for each pot.

Fertilization was carried out at sowing and tillering stage (60 kg of

water +370.68 g of carbamide +330.76 g of potassium dihydro-

gen phosphate +94.24 g of potassium chloride, to be fully

dissolved with 150mL of liquid fertilizer for each plant per time)

(Zhang et al., 2017). All the plants were screened at six time

points (S1-S6 represent 44, 57, 71, 84, 120 and 180 days after

sowing), which corresponding to seedling (S1), early tillering (S2),

late tillering (S3), stem elongation (S4), heading (S5) and grain

filling stage (S6). The growth conditions and trait collection were

shown in Figure S3.

In order to confirm the involvement of the candidate genes, we

obtained EMS mutants in the AK58 background and backcrossed

with AK58 twice to purify the genetic background. The putative

target mutation sites were verified by Sanger sequencing using

gene-specific primers (Data S16). Homozygous mutants were

used for i-trait and agronomic trait detection. Individual mutants

were grown in HTP with at least three replicates.

High-throughput phenotyping and statistical analysis

RGB images of the wheat plants were captured with high-

throughput phenotyping facility (Yang et al., 2014). Six side view

images were taken at each time when the pot was automatically

rotated by 60°. After image processing, 31 image-based digital

traits (i-traits) were extracted (Data S3 and S5). Morphological

traits were extracted based on the height, width, area and colour

of the plant which depict plant height, size and shape. Texture

traits were derived from the brightness, grey level, gradient of

pixels, which represent the grey level distribution and the spatial

relationship of pixels in the image (Yang et al., 2014).

To determine the best model for TPA (total projected area) and

H (height of the bounding rectangle), four growth models

(including linear, exponential, quadratic and power models) were

evaluated using the coefficient of determination (R2) and the

mean absolute percentage error (MAPE). The exponential model

was selected to fit TPA and H at six time points. The parameters

generated from exponential model including TPA_a, TPA_b, H_a

and H_b were used as i-traits for GWAS.

Figure 5 Prediction of yield-related traits using i-traits captured on six growth stages. (a) Prediction models were generated using i-traits collected at single

growth stages. (b) Prediction models were generated using i-traits collected at different growth stages. S6, i-traits at S6 stage only; S5-S6, i-traits at S5 and

S6 stages; S4-S6, i-traits at S4, S5 and S6 stages; S3-S6, i-traits at S3, S4, S5 and S6 stages; S2-S6, i-traits at S2, S3, S4, S5 and S6 stages; S1-S6, i-traits at

S1, S2, S3, S4, S5 and S6 stages. The prediction accuracy was presented as Pearson correlation coefficient value R between predicted value and experiment

value. (c) Best prediction models for four yield-related traits were shown. (d) Linkage between i-traits and agronomic traits. The best prediction model for

each agronomic trait was derived with i-traits separately. A link between each agronomic trait (inner aligned) and its associated i-traits (outer circle) was

created. The thickness of the links is determined by the absolute values of the coefficients of each independent variable (i-trait) in the linear regression

prediction model. Each agronomic trait was assigned a colour, and the i-traits with the highest absolute values of coefficients was assigned the same

colour. The dot size for each agronomic trait is determined by the number of i-traits in its prediction model. The dot size for each i-trait represents the

number of its appearance in prediction models.

ª 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 1–12

High-throughput phenotyping in wheat 9

 14677652, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.14104 by C

hinese A
cadem

y O
f, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



At the end of the experiment, 17 yield-related traits were

measured manually, including plant height (PH), tiller number

(TN) and spike number (SN) (Data S3 and S5). After harvest, the

spikes were collected for spike-related traits measurement. For

each spike, spike weight (SW), spike length (SL), kernel number

per spike (KN) and kernel weight (KW) (Liu et al., 2018) were

collected. Spike weight per plant (SWP), kernel number per plant

(KNP) and grain yield (GY, measured as kernel weight per plant)

were calculated by sum the corresponding spikes traits from all

spikes from the plant. Thousand kernel weight (TKW) was

generated by total grains from one plant, generally including

more than 200 seeds. Straw weight was measured after drying in

a convection oven at 45 °C for 48 h.

Heritability was calculated for each trait as follows:

H2 ¼ σ2G= σ2G þ σ2e=r
� �

where σ2G is the genotypic variance, σ2e is the error variance, and r

is the number of replicates. The σ2G and σ2e were estimated in R

environment.

Trait correlation analysis and heatmap were conducted with

Hmisc and pheatmap packages in R environment. For growth

model selection, linear model was tested with lm function and the

rest three models were performed with nlr package.

Genotyping and population structure analysis

Genomic DNA of 288 core wheat lines was extracted and

sequenced on MGI 2000 using the standard protocol. Raw reads

were processed for quality control and trimming with FastQC tool

(v0.11.7; Babraham Bioinformatics). The clean resulted high-

quality reads were aligned to wheat reference genome,

IWGSC_ref 2.1 (Zhu et al., 2021) with Burrows-Wheeler Aligner

(BWA) software (Li and Durbin, 2009). Then, the BAM alignment

files were subsequently generated in samtools (Li et al., 2009).

The resulting variant call format (VCF) file was filtered with read

depth of 1269, miss ratio< 20% and minor allele frequency

(MAF)> 0.05; the SNP annotation was performed according to

the reference genome, IWGSC_ref 2.1 with SnpEff (Cingolani

et al., 2012). PopLDdecay (Zhang et al., 2019) was employed for

linkage disequilibrium (LD) decay evaluation. The phylogenetic

analysis and kinship were conducted with Plink (Purcell

et al., 2007) and KING (Manichaikul et al., 2010), respectively.

The population structure was estimated with Admixture (Alexan-

der et al., 2009).

Genome-wide association analysis candidate gene
selection

After quality control, 12 182 649 single nucleotide polymor-

phisms (SNPs) and 456 364 insertion and deletions (InDel) were

obtained and subsequently used for genome-wide association

analysis (GWAS) with 207 traits including 186 i-traits, 4 growth

parameters and 17 agronomic traits. GWAS was performed

using FaST-LMM program (Lippert et al., 2011) with a mixed

model. The population structure vector (K= 9) and a kinship

matrix were used to correct population structure and family

relatedness. A total of 12 639 013 markers were involved in

GWAS. To reduce false negatives due to Bonferroni correction

(1/number of markers), significant markers trait association were

selected with P-value <1E-7 for all traits in this study. The

significantly associated markers were extended to LD-based QTLs

using r2= 0.5 as threshold, as previously described (Pang

et al., 2020). For each trait, all significant SNPs within

overlapping QTL intervals were categorized as an associated

locus and represented by lead markers (that with the lowest P

value) and QTL close to each other (distance <2Mb) were

merged. QTL with spanned region larger than 50Mb were

excluded. The variance explained by the locus was estimated

with lm function in R software.

The annotated genes within the identified QTL were extracted

from the IWGSC_ref 2.1 as candidate genes. In addition, genes

adjacent lead markers within 3Mb both upstream and down-

stream are also included as potential candidate genes. These

adjacent genes were selected by: (1) non-synonymous markers

were detected on the genes; (2) these non-synonymous markers

were significantly associated with the trait at a lower threshold, P-

value <1E-6. The corresponding rice orthologous genes were

identified by blastp function from BLAST+ suite (Camacho

et al., 2009) with Evalue <1E-5 as threshold. The rice protein

sequences were downloaded from MSU Rice Genome Annota-

tion Project Release 7 (Kawahara et al., 2013). The keywords for

the founded rice genes were annotated with funRiceGenes (Yao

et al., 2018).

Machine learning methods for the prediction of
agronomic traits

Two machine learning regression models, least absolute shrink-

age and selection operator (LASSO) and Random Forest (RF), were

assessed for yield-related traits prediction based on i-traits

collected at six stages. In LASSO method, generalized linear

models were developed based on i-traits in several growth stages:

y ¼ aþ B� X:

where y is the target agronomic trait; a is the intercept; B is a

vector of slope; X is the i-traits vector with a length of 31 × n

(number of growth stages). The models were estimated with

glnmet package based on a least absolute shrinkage and selection

operator (LASSO) method (Friedman et al., 2010). In RF method,

the caret::train () function was used and models were developed

based on i-traits collected at different stages. The phenotype data

was divided into threefolds (K= 3), with twofolds for model

training and onefold for testing. The performance of prediction

models was evaluated with cross-validation. Pearson’s correlation

(R) was calculated between predicted values and experimental

values for testing set.

Genotyping of Vrn1 genes and TraesCS7A03G0149400
with PCR based primers

Vrn1-5A, Vrn1-5B and Vrn1-5D were genotyped using gene-

specific primers as previously described (Yan et al., 2004).

Genomic DNA from 288 wheat accessions was used as template

and PCRs were performed using Taq DNA Polymerase (Vazyme,

Nanjing, China) with primers listed in Data S16. The PCR products

were analysed with electrophoresis through agarose gels for Vrn1

genes. Gene-specific primers were designed for the detection of

InDels in TraesCS7A03G0149400 (Data S16). The PCR products

were analysed with electrophoresis through polyacrylamide gels

for the association population.

Accession numbers

All the genome sequencing data generated in this study have

been deposited in the public database of the China National

Genebank (https://db.cngb.org/cnsa) under the accession number

CNP0003712.
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