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Abstract  
Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. 
Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) 
has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), 
but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used 
multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant–fungi 
interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buck-
wheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmo-
nate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related 
flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic pro-
teinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an 
antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host 
resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops. 
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Introduction 
Rhizoctonia solani, belonging to the phylum Basidiomycota, is 
an aggressive soil-borne hemibiotrophic pathogen causing 
devastating diseases worldwide in a wide range of economic-
ally important crops, such as rice (Oryza sativa), wheat 
(Triticum aestivum), maize (Zea mays), potato (Solanum tu-
berosum), soybean (Glycine max), tomato (Solanum lycoper-
sicum), sugar beet (Beta vulgaris), and cabbage (Brassica 
oleracea) (Yang and Li 2012). Plant defense against pathogen 
attack usually activates plant hormone signaling pathways 
involving jasmonic acid (JA), ethylene (ET), and salicylic 
acid (SA; Bari and Jones 2009; Kouzai et al. 2018). However, 
the precise mechanism of action of phytohormones in plant 
disease resistance is yet to be fully uncovered. At present, the 
control of R. solani in fields is highly dependent on chemical 
fungicides, while cultural practices and biological control 
have little effect (Molla et al. 2020). Given these facts, the de-
velopment of genetically encoded resistance has become an 
ideal alternative approach to combat the pathogen. 

Omics (genomics, transcriptomics, proteomics, and meta-
bolomics) platforms have been used to understand patho-
genesis and host defense in several studies. Draft genome 
sequences are available for different R. solani isolates repre-
senting 4 anastomosis groups (AGs), namely, rice AG1-IA 
(Zheng et al. 2013), lettuce (Lactuca sativa) AG1-IB 
(Wibberg et al. 2013, 2015), sugar beet AG2-2IIIB (Wibberg 
et al. 2016), potato AG3-PT (Wibberg et al. 2017), and wheat 
AG8 (Hane et al. 2014). Comparative genomic and transcrip-
tomic studies of R. solani isolates have revealed differences in 
their genetic structure and gene expression profiles that may 
contribute to the host preference and virulence of this 
pathogen (Xia et al. 2017; Lee et al. 2021; Mat Razali et al. 
2021). Metabolite profiles of R. solani–infected rice demon-
strated an alteration of the glycolytic and oxidative pentose 
phosphate pathways as well as of secondary metabolism 
(Mutuku and Nose 2012). Quantitative trait locus (QTL) ana-
lysis for rice sheath blight resistance has been well studied 
and summarized (Molla et al. 2020; Li, Guo, et al. 2021; Li, 
Li, et al. 2021). Recently, genes associated with sheath blight 
resistance were identified in maize (Li et al. 2019) and rice 
(Wang, Shu, et al. 2021) by a genome-wide association study 
(GWAS). 

Multinucleate R. solani isolates are divided into 14 physio-
logically and genetically distinct AGs (AG-1 to AG-13 and 
AGB1), some of which include several subgroups (Yang and 
Li 2012). R. solani AG4-HGI 3 was isolated from Tartary buck-
wheat (Fagopyrum tataricum [L.] Gaertn.) and can cause 
stem canker, damp-off, and death of seedlings, resulting in se-
vere yield loss (Li, Zhang, et al. 2021). The genetic resistance 
of Tartary buckwheat against this disease, however, remains 
unknown. In this work, we report on the genome sequence of 
R. solani AG4-HGI 3 and performed a comparative analysis 
with the genomes of other R. solani isolates. We discovered 
a JA–induced response to R. solani in Tartary buckwheat 
when pathogen and host plants interact. Based on the 

evaluation of the response to R. solani in 320 Tartary buck-
wheat accessions, we used GWAS to identify loci associated 
with disease resistance. We identified the 2 candidate resist-
ance genes cytochrome P450 (FtCYP94C1) and aspartic pro-
teinase (FtASP) and functionally analyzed them here. The 
genetic resource presented in this work should contribute 
to the development of effective techniques for controlling 
this devastating pathogen. 

Results 
Genome assembly identified abundant pathogenesis– 
related genes in R. solani AG4-HGI 3 
To compare R. solani AG4-HGI 3 with other isolates, we ex-
plored candidate host crops of R. solani AG4-HGI 
3. Inoculation experiments showed that the host range of 
R. solani AG4-HGI 3 is very extensive, as it infected not 
only the monocot plant species rice and wheat but also 
the species of Eudicots in the Brassicaceae, Cucurbitaceae, 
Leguminosae, Solanaceae, and Amaranthaceae families (cu-
cumber [Cucumis sativus], lettuce, Nicotiana benthamiana, 
and tomato, among others; Supplemental Fig. S1). The broad 
host range of R. solani AG4-HGI 3 piqued our interest to 
study the mechanism underlying pathogenicity in this iso-
late. Staining with 4′,6-diamidino-2-phenylindole (DAPI) de-
monstrated that R. solani AG4-HGI 3 is a multinucleate 
isolate, with the number of nuclei in a single cell varying 
(Supplemental Fig. S2). We determined the genome se-
quence of R. solani AG4-HGI 3 using Illumina HiSeq and 
PacBio sequencing platforms (Supplemental Data Set 1). 
The estimated genome size is 46.05 Mb with a heterozygous 
rate of ∼1.49% (Supplemental Data Set 2), which was higher 
than that of most other multinucleus isolates, including R. so-
lani AG1-IA (0.12%; Zheng et al. 2013) and AG1-XN (0.26%;  
Li, Guo, et al. 2021; Li, Li, et al. 2021). The assembled genome 
size is ∼65.36 Mb, which is somewhat larger than the esti-
mated genome size and that of most other R. solani isolates 
(Supplemental Data Sets 2 and 3 and Fig. S3). Accordingly, R. 
solani AG4-HGI 3 is predicted to contain at least 30% more 
protein-coding genes than all other sequenced R. solani iso-
lates (Supplemental Fig. S4). However, the GC content 
(48.2%) was similar to that of other R. solani isolates. The 
scaffold N50 value is 568.8 kb, which is higher than that ob-
tained from the assembled genomes of R. solani AG4 
(Kaushik et al. 2022). We assessed the quality of the draft gen-
ome using the Benchmarking Universal Single-Copy 
Orthologs (BUSCO) and the Core Eukaryotic Gene 
Mapping Approach (CEGMA), with completeness scores of 
94.1% and 95.97%, respectively, indicating the high quality 
of our genome assembly (Supplemental Data Set 4). 
Further, 30% of all genes appear to be duplicated according 
to the BUSCO analysis and randomly distributed on the scaf-
folds, which likely underlies the gene number expansion in 
this strain (Supplemental Fig. S5). 

We identified a total of 438.6 kb (0.67%) of the R. solani 
AG4-HGI 3 genome as repeat containing, comprising 546  
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elements from 16 DNA transposons and retrotransposon 
families (Supplemental Data Set 5). These transposons are 
randomly distributed on the scaffolds (Supplemental Fig. 
S5). The content of repeat elements varies across isolates 
(Supplemental Data Set 6), and the proportion of repeat ele-
ments is lower in AG4-HGI 3 than in other R. solani isolates 
(Zheng et al. 2013; Hane et al. 2014; Lee et al. 2021). The 
transposon element long terminal repeat-vertebrate retro-
virus 1 (LTR-ERV1) appeared the most abundant, accounting 
for 0.13% of total repetitive element length. The numbers of 
DNA, long interspersed nuclear element (LINE), satellite, and 
short interspersed nuclear element (SINE) transposons are 
modest compared to those from other isolates in R. solani, 
although some elements may have been missed in the 
more fragmented genomes of some isolates due to different 
sequencing and assembly strategies. 

To investigate the phylogenetic relationships of all 23 R. so-
lani available genomes in this work, we generated a max-
imum likelihood–based phylogenetic tree from single-copy 
orthogroups (Fig. 1A). We determined that R. solani 
AG4-HGI 3 is closely related to the other AG4 strains, 
AG4-HGI 1 and AG4-HGI 2. Moreover, a syntenic analysis 
also identified a large number of syntenic relationships be-
tween R. solani AG4-HGI 3 with other AG4 strains 
(Supplemental Fig. S6), confirming the close relationship be-
tween these strains. Genome comparison demonstrated that 
R. solani contains 9,630 orthogroups absent from 
Magnaporthe oryzae (Supplemental Data Set 7). Among 
them, 664 orthogroups were specific to R. solani AG4, of 
which 131 orthogroups are shared by the 3 isolates, and 
350 orthogroups are specific to R. solani AG4-HGI 3 
(Supplemental Data Set 8). We also identified 3,236 signifi-
cantly expanded gene families (consisting of 11,339 genes) 
and 891 significantly contracted gene families (comprising 
103 genes) (P < 0.05 computed with CAFÉ) in R. solani 
AG4-HGI 3 (Figs. 1A and S7 and Supplemental Data Set 9). 
Of the 891 contracted gene families, 801 were apparently en-
tirely absent in strain AG4-HGI 3. A gene ontology (GO) term 
enrichment analysis revealed that the expanded gene families 
are mainly enriched in catalytic activity and ion binding 
(Fig. 1B). Of the genes in the expanded gene families, 394 
were involved in glycosyl hydrolysis activity, and 74 were in-
volved in pectate lyase activity. As the plant cell wall is mainly 
composed of cellulose, hemicellulose, and pectin and cell wall 
degradation is closely associated with the saprophytic life-
style of fungi (Cantarel et al. 2009), the expansion of these 
cell wall degradation–related genes might be responsible 
for the broad host range of R. solani AG4-HGI 3. 

Considering the broad host range of R. solani AG4-HGI 3, 
and given that the pathogenicity genes encoding 
carbohydrate-active enzymes (CAZymes), secreted proteins, 
and effectors are prime weapons for pathogen infection and 
modulation of host morphology (Zheng et al. 2013; Kaushik 
et al. 2022), we turned our attention to these pathogenicity 
genes. CAZymes are necessary for phytopathogenic organ-
isms to degrade the structural components of the cell wall 

and hence enter their host plants (Cantarel et al. 2009). We 
therefore characterized the CAZyme complement in R. solani 
and M. oryzae. We predicted a total of 1,026 CAZymes in R. 
solani AG4-HGI 3 (Supplemental Data Set 10 and Fig. S5), ac-
counting for 5.45% of all protein-coding genes, which was 
greater than in some isolates of R. solani (AG1-IA, 
AG1-IB-7/3/14, AG3-PT-1AP, and AG8-WAC10335) and M. 
oryzae (Supplemental Data Set 11, Supplemental Figure S8). 
We identified a greater proportion of CAZymes involved in 
lignin, cellulose, hemicellulose, and pectin degradation in 
R. solani AG4-HGI 3 compared to AG1-IA and 
AG8-WAC10335 (Fig. 1A and Supplemental Data Set 12), 
which was in accordance with the expanded number of genes 
related to glycosyl hydrolysis and pectate lyase activity in R. 
solani AG4-HGI 3. Secreted proteins are essential in inhibiting 
the defense response of host cells (Lee et al. 2021): we pre-
dicted a total of 1,167 secreted proteins in R. solani 
AG4-HGI 3 (Supplemental Data Set 13), accounting for 
6.20% of all protein-coding genes, which is relatively lower 
than in most other R. solani isolates (Supplemental Data Set 
14). Moreover, we identified relatively fewer predicted effec-
tors in AG4-HGI 3 (accounting for 1.56% of the protein- 
coding genes) relative to most other strains (Supplemental 
Data Sets 15 and 16). In addition, the proportion of 
CAZymes was higher in most R. solani strains compared to 
M. oryzae, while R. solani was characterized by a smaller pro-
portion of secreted proteins and effectors than M. oryzae. 
These findings might be an important feature that distin-
guishes this species from M. oryzae, and in accordance with 
previous work demonstrating fewer secreted proteins in R. so-
lani than in other filamentous pathogens (Anderson et al. 
2017). Moreover, we predicted 2,355 virulence genes, 3,099 
pathogen–host interaction genes, 2,124 transporter genes, 
2,071 transmembrane protein genes, and 19 secondary me-
tabolite biosynthesis gene clusters in R. solani AG4-HGI 3 
(Supplemental Data Sets 17 to 21). These candidate genes 
are randomly distributed across the scaffolds (Supplemental 
Fig. S5) and represent a valuable resource to reveal the intim-
ate mechanism of R. solani infection of susceptible plant 
species. 

Upregulated pathogenesis–related genes are involved 
in R. solani AG4-HGI 3 infection of Tartary buckwheat 
To gain insight into the pathogenesis of R. solani AG4-HGI 3 
infection of Tartary buckwheat, we performed an RNA-seq 
analysis of R. solani AG4-HGI 3 at 3 infection stages (6 h, 
water-soaked spots appeared; 14 h, spots expansion signifi-
cantly; and 22 h, rotten and necrotic spots appeared) using 
the assembled genome of R. solani AG4-HGI 3 as a reference 
(Supplemental Fig. S9 and Data Set 22). The strain without 
host infection was used as negative control. In total, we de-
termined that 19,140 genes (including 18,821 protein-coding 
genes, 265 transfer RNAs [tRNAs], and 54 ribosomal RNAs 
[rRNAs]) are expressed at some point during infection. Of 
these, 16.8% (3,215 out of 19,140) were upregulated in at  
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Figure 1. Expansion of cell wall degradation enzymes in R. solani AG4-HGI 3. A) Phylogenetic tree depicting the relationships among the genomes of 
23 R. solani strains (left). The phylogenetic tree was reconstructed using the maximum likelihood approach based on single-copy orthogroups and 
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least 1 time point and 270 genes were upregulated at all time 
points (Supplemental Data Set 23 and Fig. S10). Further, 503 
genes were upregulated within the first 6 h of Tartary buck-
wheat infection by R. solani AG4-HGI 3 (Fig. 2A), rising dra-
matically after infection for 14 h to 2,102 genes, while 
slightly increasing after 22 h of infection (2,655 genes), sug-
gesting that the transcriptome of R. solani AG4-HGI 3 reacts 
strongly after 14 h of infection. We analyzed the functions of 
all 3,215 upregulated genes according to their annotation in 
the assembled genome. In total, 477 virulence genes, 401 
genes encoding secreted proteins, 695 genes encoding 
pathogen-host interaction proteins, and 107 genes encoding 
effectors were upregulated in at least 1 time point (Fig. 2B 
and Supplemental Data Set 23). A Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis 
revealed that the highly expressed transcripts are significant-
ly enriched in the ribosome (Fig. 2C), suggesting that tran-
script translation is metabolically active during R. solani 
AG4-HGI 3 infection of Tartary buckwheat. The list of these 
upregulated pathogenesis–related genes will undoubtedly 
provide further clues to reveal the mechanism during R. sola-
ni AG4-HGI 3 infection of Tartary buckwheat. 

We also analyzed the expression level of expanded gene 
families in R. solani AG4-HGI during infection of Tartary 
buckwheat (Supplemental Data Sets 24 to 27). Most 
(>70%) of the genes in expanded gene families exhibited 
no significant change during infection of Tartary buck-
wheat. Less than a quarter of expanded gene families exhib-
ited more differentially expressed genes than unchanged 
genes. In addition, the proportions of upregulated and 
downregulated genes in expanded gene families were lower 
than that for the whole genome following infection for 6 
and 22 h, while we observed the opposite pattern 14 h 
into infection, further confirming that this time point is cru-
cial for R. solani AG4-HGI 3 infection. Less than a quarter of 
expanded gene families exhibited larger proportions of up-
regulated or downregulated genes than that for the whole 
genome. We conducted GO and KEGG analyses to investi-
gate the expression pattern of expanded gene families with 
specific functions (Supplemental Figs. S11 and S12). We ob-
served that the upregulated expanded gene families are 
mainly enriched in genes related to pentose and glucuron-
ate interconversion, cyanoamino acid metabolism, ribo-
some, starch and sucrose metabolism, and cysteine and 
methionine metabolism. The downregulated expanded 
gene families were mainly enriched in genes related to gly-
colysis/gluconeogenesis, amino sugar and nucleotide sugar 
metabolism, methane metabolism, arginine and proline 
metabolism, and ABC transporters. 

As with expanded gene families, the expression level of most 
genes in contracted gene families exhibited no changes during 
infection of Tartary buckwheat (Supplemental Data Sets 28 to 
31). Less than 3% of contracted gene families had more differen-
tially expressed genes than unchanged genes. In addition, the 
proportions of upregulated and downregulated genes in con-
tracted gene families were higher than that for the whole gen-
ome. Less than 2.5% of contracted gene families exhibited larger 
proportion of upregulated or downregulated genes than that 
for the whole genome. GO and KEGG analyses revealed that 
the upregulated contracted gene families are mainly enriched 
in genes related to sulfur metabolism, carbon metabolism, lysine 
degradation, monobactam biosynthesis, and riboflavin metab-
olism (Supplemental Figs. S13 and S14). The downregulated 
contracted gene families were mainly enriched in genes related 
to glycolysis/gluconeogenesis, pyruvate metabolism, glycero-
phospholipid metabolism, and carbon metabolism. The varied 
gene number and expression level of these gene families with 
specific functions may help further reveal the infection mechan-
ism of R. solani AG4-HGI 3. 

As comparative genomics revealed that R. solani AG4-HGI 
3 has more CAZyme genes than other R. solani isolates, we 
examined the expression levels of genes encoding 
CAZymes during R. solani AG4-HGI 3 infection of Tartary 
buckwheat in detail. Overall, nearly half (467 out of 1,026) 
of all genes encoding CAZymes were upregulated in at least 
1 time point during Tartary buckwheat infection by R. solani 
(Supplemental Data Sets 32 and 33). Notably, 424 CAZyme 
genes were upregulated at 14 h into infection, which was 
more than at 6 (76 genes) and 22 h (387 genes), suggesting 
that this period is important for the degradation of the cell 
wall of Tartary buckwheat by R. solani. Further analysis indi-
cated that 106 of these upregulated CAZymes were involved 
in cellulose degradation and another 117 were involved in 
hemicellulose degradation, 174 in pectin degradation, and 
35 in lignin degradation (Fig. 2D and Supplemental Data 
Set 34). Identification of these upregulated CAZyme genes 
will help reveal specific components of the plant cell wall 
degradation machinery during R. solani infection. 

To investigate the mechanism of R. solani AG4-HGI 3 infec-
tion of Tartary buckwheat, we assessed the functions of viru-
lence genes experimentally by transient heterologous 
expression in N. benthamiana leaves. We chose YTH domain- 
containing protein (RsYTHDC, gene04142), proline-rich protein 
(RsPRP, gene00437), and laminin domain-containing protein 
(RsLDCP, gene15409), which are homologs of virulence genes 
(AG1IA_00579, AG1IA_04049, and AG1IA_06427) previously 
identified in R. solani AG1-IA (Zheng et al. 2013). D-Arabinitol 
2-dehydrogenase (RsDAD, gene08192) is a R. solani AG4-HGI 

(Figure 1. Continued)  
CAZyme genes, with the intensity of colors being proportional to the number of genes. AA, auxiliary activity; CE, carbohydrate esterase; GT, glycosyl 
transferase; GH, glycoside hydrolase; CBM, carbohydrate-binding module; PL, polysaccharide lyase. B) Most significantly enriched GO terms of ex-
panded gene families in R. solani AG4-HGI 3. Enriched pathways related to glycosyl hydrolysis and pectate lyase are shown in red. BP, biological 
process; MF, molecular function; CC, cellular component.   
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Figure 2. Differentially expressed R. solani genes during infection of Tartary buckwheat. A) Venn diagram showing the number of commonly and 
uniquely upregulated genes from R. solani AG4-HGI 3 during the R. solani–Tartary buckwheat interaction for 6 (RS 6 h), 14 (RS 14 h), and 22 h (RS 
22 h). Mycelial disks subcultured on PDA medium were used to infect the leaves of 21-d-old Tartary buckwheat seedlings for the indicated times 
before the leaves were harvested for transcriptome analysis. Three independent biological replicates (n = 10 seedlings each) for each treatment were 
conducted. Genes with adjusted P ≤ 0.05 and fold change > 2 (compared to noninoculated control samples) were considered to be significantly 
differentially expressed genes and used for analysis. RS, R. solani. B) Venn diagram showing the overlap between upregulated genes encoding pre-
dicted CAZymes, effectors, secreted proteins, virulence proteins, and interaction proteins in R. solani AG4-HGI 3 during infection of Tartary buck-
wheat. C) Most significantly enriched KEGG metabolic pathways of upregulated genes from R. solani AG4-HGI 3 during the infection of Tartary 
buckwheat by R. solani. Numbers next to the bars indicate the P-values. D) Heatmap showing the gene expression pattern of R. solani AG4-HGI 
3–upregulated CAZyme genes involved in cellulose degradation during R. solani infection of Tartary buckwheat for 6 (Rs 6 h/0 h), 14 
(Rs 14 h/0 h), and 22 h (Rs 22 h/0 h). Intensity of the colors is proportional to log2FC. GH, glycoside hydrolase; CBM, carbohydrate-binding module; 
AA, auxiliary activity; BGL, β-glucosidase; CBH, cellobiohydrolase; EGL, endoglucanase; LPMO, lytic polysaccharide monooxygenase. E) Phenotypes 
observed on N. benthamiana leaves heterologously expressing RsYTHDC, RsLDCP, RsPRP, or RsDAD and infected with R. solani AG4-HGI 3. N. 
benthamiana leaves were inoculated with subcultured mycelial disks for 2 d. Leaves transiently infiltrated with the empty vector (EV) control 
and then infected by R. solani AG4-HGI 3 were used as negative control. The phenotypes were observed in leaves of 3 independently infiltrated 
N. benthamiana seedlings (n = 3). The experiments were performed 3 times using different batches of N. benthamiana seedlings with similar results. 
Photographs of N. benthamiana leaves from 1 representative experiment are shown. Scale bars, 1 cm.   
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3–specific interacting virulence gene that is significantly upre-
gulated during R. solani AG4-HGI 3 infection for 14 and 22 h. 
We individually expressed RsYTHDC, RsPRP, RsLDCP, and 
RsDAD from R. solani AG4-HGI 3 in N. benthamiana leaves 
(Supplemental Fig. 15) and evaluated disease resistance fol-
lowing subculture with mycelial disks for 48 h. None these 4 
virulence genes caused any morphological changes to the in-
filtrated leaves in normal growth conditions (Supplemental 
Fig. S16) but significantly enhanced disease susceptibility 
compared to the control, as measured by relative fungal bio-
mass and MDA content (Figs. 2E, S17, and S18), suggesting 
that these virulence genes might help pathogens infect host 
plants successfully. 

To explore the function of these virulence proteins in 
plants, we determined the subcellular localization of 
RsYTHDC and RsDAD fused to the green fluorescent protein 
(GFP). A transient N. benthamiana expression assay indicated 
that RsYTHDC and RsDAD localize in both the cytoplasm and 
nucleus (Supplemental Fig. S19), suggesting that these viru-
lence factors may help pathogen infection by interacting 
with plant proteins. We also looked for proteins interacting 
with RsYTHDC or RsDAD using a combination of pull-down 
and mass spectrometry method (Supplemental Fig. S20;  
Brymora et al. 2004). We obtained 236 and 192 candidate pro-
teins that might interact with RsYTHDC or RsDAD, respect-
ively (Supplemental Data Sets 35 and 36). Most homologs 
of the candidate RsYTHDC-interacting proteins were previ-
ously described to confer disease resistance, including endo-
chitinase (FtPinG0404899000) (Bai et al. 2021), aquaporin 
(FtPinG0606269900) (Tian et al. 2016), polygalacturonase 
-inhibiting protein (FtPinG0505912500 and FtPinG0707633 
000) (Borras-Hidalgo et al. 2012), UDP-glycosyltransferase 
(FtPinG0707681200) (Pasquet et al. 2016; He et al. 2020), 
mitogen-activated protein kinase (FtPinG0505354900) 
(Wang, Shao, et al. 2021), oxalate-CoA ligase 
(FtPinG0201520900) (Peng et al. 2017), cationic peroxidase 
(FtPinG0606353800) (Wally and Punja 2010), annexin 
(FtPinG0404585800) (Zhao et al. 2019), vacuolar-processing 
enzyme like (FtPinG0303401000) (Wang et al. 2017; Dong 
et al. 2022), and protein THYLAKOID FORMATION1 
(FtPinG0808541100) (Wangdi et al. 2010). Likewise, homologs 
of some candidate RsDAD-interacting proteins have been 
previously shown to enhance disease resistance: major latex 
protein (FtPinG0100209300) (Yang et al. 2015), chorismate 
synthase (FtPinG0505432600) (Hu et al. 2009), peptide me-
thionine sulfoxide reductase (FtPinG0100988800) (Oh et al. 
2010), serine hydroxymethyltransferase (FtPinG0202435800) 
(Moreno et al. 2005), and L-ascorbate peroxidase 
(FtPinG0403764100) (Liu et al. 2018). Homologs of other pu-
tative interactors with RsDAD included disease susceptibility 
genes encoding nucleoside diphosphate kinase 
(FtPinG0707189500 and FtPinG0808916000) (Ye et al. 
2020), isocitrate dehydrogenase (FtPinG0505344500) 
(Mhamdi et al. 2010), monodehydroascorbate reductase 
(FtPinG0404369900) (Feng et al. 2014), ferredoxin-dependent 
glutamate synthase (FtPinG0707851300) (Chen et al. 2016), 

and phosphate transporter (FtPinG0707291400) (Dong 
et al. 2019). We employed bimolecular fluorescence comple-
mentation (BiFC) assays to verify the interaction between the 
virulence proteins and their candidate interacting proteins. 
We established that a serine hydroxymethyltransferase 
(FtSHMT, FtPinG0202435800) can interact with the virulence 
protein RsDAD, suggesting the reliability of these candidate 
interacting proteins (Supplemental Fig. S21). However, as 
the function of their encoding genes in Tartary buckwheat re-
sponse to R. solani AG4-HGI 3 infection might be varied, fur-
ther study is needed to ascertain the function of these 
candidate interacting proteins. 

JA is involved in Tartary buckwheat resistance to 
R. solani AG4-HGI 3 
Although the study of the fungal genome and the plant–fun-
gus interaction transcriptome can help us understand the 
pathogenesis of the strains, how plants respond to these fun-
gal infections remains unclear. Through studying the mech-
anism of host plant response to pathogens, exploitation 
and utilization of disease resistance genes represent an im-
portant means to improve the disease resistance of host 
plants. To better understand the host plant response to R. so-
lani, we analyzed the transcriptomes of Tartary buckwheat in 
response to R. solani AG4-HGI 3 infection (Supplemental 
Data Set 37). In total, 48.5% (17,745 out of 36,613) of 
Tartary buckwheat genes were differentially expressed in at 
least 1 time point during R. solani AG4-HGI 3 infection 
(Supplemental Data Set 38 and Fig. S22). Again, the number 
of differentially expressed genes peaked at 14 (14,698 genes) 
and 22 h (15,200 genes), nearly twice as many as at 6 h (7,773 
genes), suggesting that the Tartary buckwheat transcrip-
tomic response to infection is greatest when the pathogen 
is most active. A KEGG analysis revealed that a large fraction 
of differentially expressed genes is involved in plant second-
ary metabolite biosynthesis, as well as phytohormone signal-
ing (Fig. 3A), suggesting that these pathways are of critical 
importance to the plant response to R. solani infection. 

We investigated the function of disease-related phytohor-
mones on plant defense against R. solani, by evaluating dis-
ease resistance of Tartary buckwheat seedlings pretreated 
with the phytohormones gibberellin (GA), ET, SA, and JA 
(Supplemental Fig. S23). We observed that the sunken lesion 
and dark brown symptoms are visibly alleviated in Tartary 
buckwheat seedlings pretreated with JA, but not with other 
phytohormones, compared to the control pretreated with 
DMSO. We thus speculated that JA might play an important 
role in Tartary buckwheat defense against R. solani AG4-HGI 
3 infection. As JA is a plant hormone that plays important 
roles in the regulation of plant secondary metabolites biosyn-
thesis and disease resistance (Bari and Jones 2009; De Geyter 
et al. 2012; Verma et al. 2016; Zhou and Memelink 2016), we 
focused on the expression level of genes involved in JA bio-
synthesis and signaling. In total, 62 differentially expressed 
genes appeared involved in JA biosynthesis and signaling 
(Fig. 3B and Supplemental Data Set 39), suggesting that JA  
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signal transduction plays an important role during R. solani 
infection of Tartary buckwheat. 

As numerous JA signaling genes were differentially ex-
pressed during R. solani infection, we studied the involve-
ment of JA signaling during host plant response to R. solani 
infection. To this end, we determined the kinetic response 
of the transcriptome following methyl jasmonate (MeJA) 
treatment at different time intervals (1, 4, and 12 h; i.e. the 
early stages of infection where the greatest responses are 
seen by both the pathogen and the plant; Supplemental 
Data Set 40). We identified the Tartary buckwheat genes 
that are differentially expressed during R. solani infection 
and following MeJA treatment. We established that 29.3% 
(5,205 out of 17,745) of the genes differentially expressed 
during R. solani infection are also differentially expressed fol-
lowing MeJA treatment (Fig. 3C; Supplemental Data Set 41 
and Fig. S24), confirming that JA signaling plays an essential 
role in Tartary buckwheat response to R. solani. A KEGG ana-
lysis revealed that many differentially expressed genes are in-
volved in phenylpropanoid and flavonoid biosynthesis 
(Fig. 3D). As previous research has shown that JA can regulate 
flavonoid biosynthesis (Zhou et al. 2017; Zhang, Yohe, et al. 
2018, Zhang, Logacheva, et al. 2018; Chen et al. 2019; Ding 
et al. 2021) and flavonoids are involved in biotic stress re-
sponses (Misra et al. 2010; Ullah et al. 2017), we speculated 
that JA might regulate flavonoids biosynthesis, hence modu-
lating the disease resistance of Tartary buckwheat. 

Of the above genes significantly upregulated during R. sola-
ni infection and MeJA treatment, we characterized the JA sig-
naling transduction gene FtCYP94C1 (FtPinG0808388800), 
homologous to Arabidopsis CYP94C1, encoding an enzyme re-
sponsible for JA-Ile oxidation to 12OH-JA-Ile (Heitz et al. 
2012) (Fig. 4, A to C). Heterologous expression of 
FtCYP94C1 in Arabidopsis or its overexpression in Tartary 
buckwheat exhibited no change in phenotype compared to 
wild-type plants, while resulting in significantly enhanced dis-
ease resistance compared to the controls (Figs. 4, D and E, and  
S25 to S28), as also described in its homolog gene in 
Arabidopsis (Poudel et al. 2019). Various JA biosynthesis 
and signaling mutants (aoc4, jar1 [ jasmonate resistant 1], 
and myc2 myc3 myc4) displayed decreased disease resistance 
compared to the controls (Supplemental Figs. S29 to S31), 
and pretreatment with JA increased their disease resistance 
index, suggesting a positive role for JA signaling on plant de-
fense against R. solani AG4-HGI 3. However, the disease resist-
ance ability of FtCYP94C1 was in contrast with the well-known 
reduced capacity of 12OH-JA-Ile in promoting the formation 
of the CORONATINE INSENSITIVE 1–JASMONATE-ZIM 
-DOMAIN PROTEIN 1 (COI1–JAZ) receptor complex (Koo 
et al. 2011; Heitz et al. 2012; Koo et al. 2014) and the positive 
regulation disease resistance by JA signaling (Verma et al. 
2016; Pan et al. 2020), suggesting that FtCYP94C1 may regulate 
Tartary buckwheat resistance to R. solani through other path-
ways beside typical JA signaling. As many genes differentially 
expressed during both R. solani infection and MeJA treatment 
were involved in flavonoid biosynthesis and the positive 

regulation of 12OH-JA-Ile in flavonoid biosynthesis (Poudel 
et al. 2019), we analyzed the metabolome of FtCYP94C1 over-
expression Arabidopsis lines to investigate the metabolic 
changes involved in disease resistance (Supplemental Fig. 
S32 and Data Set 42). 12OH-JA-Ile significantly accumulated 
in FtCYP94C1 overexpression lines, confirming that 
FtCYP94C1 is responsible for JA-Ile oxidation to 
12OH-JA-Ile. Moreover, the flavonoids including rutin, querci-
trin, and chalcone also accumulated in FtCYP94C1 overex-
pression lines (Fig. 4F). Flavonoid contents significantly 
decreased in JA biosynthesis and signaling mutants (aoc4, 
jar1, and myc2 myc3 myc4; Supplemental Fig. S33) and signifi-
cantly increased after JA treatment, suggesting a positive role 
for typical JA signaling on flavonoid content. As flavonoids 
have been previously reported to enhance disease resistance 
(Yamamoto et al. 2000; Misra et al. 2010; Yang et al. 2016;  
Schenke et al. 2019), we speculate that FtCYP94C1 may not 
function through the typical JA signaling pathway by promot-
ing the formation of COI1–JAZ receptor complex but rather 
by increasing the accumulation of disease resistance–related 
flavonoids. 

We noticed that the expression of genes encoding some of 
the candidate proteins interacting with the virulence pro-
teins RsYTHDC and RsDAD respond to both R. solani infec-
tion and MeJA treatment. Among them, homolog of 
UDP-glycosyltransferase (FtPinG0707681200) is involved in 
the biosynthesis of plant disease–related secondary metabo-
lites (Pasquet et al. 2016; He et al. 2020). Homologs of 
polygalacturonase-inhibiting proteins (FtPinG0505912500 
and FtPinG0707633000) are structural glycoproteins of the 
plant cell wall with antifungal activity; they can specifically 
bind to and inhibit fungal polygalacturonases (Ferrari et al. 
2003). The expression of these disease resistance genes was 
mostly upregulated after both R. solani infection and MeJA 
treatment (Supplemental Data Sets 35 and 36), as previously 
reported in Arabidopsis and golden root (Rhodiola sachali-
nensis) (Ferrari et al. 2003; Yu et al. 2011). The possible inter-
action between virulence proteins and these disease 
resistance proteins may result in the dysfunction of resist-
ance proteins, hence reducing the plant immune response 
and helping pathogens infect their host successfully. We 
speculate that the JA–induced expression of these disease re-
sistance genes may alleviate the dysfunction of their encoded 
resistance proteins, thus helping Tartary buckwheat better 
resist pathogen infection. However, this conjecture needs 
to be tested. 

Integrating GWAS and gene expression data to 
accurately identify candidate genes that confer 
resistance to R. solani AG4-HGI 3 in Tartary 
buckwheat 
Although the JA signaling pathway gene FtCYP94C1 was de-
monstrated above to be connected to Tartary buckwheat re-
sistant to R. solani AG4-HGI 3, the functions of many other 
Tartary buckwheat genes differentially expressed during  
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Figure 3. Differentially expressed genes from Tartary buckwheat during R. solani infection. A) Most significantly enriched KEGG metabolic pathways 
among differentially expressed genes of Tartary buckwheat during R. solani infection. The leaves of 21-d-old Tartary buckwheat seedlings were in-
oculated with mycelial disks subcultured on PDA medium for 6, 14, or 22 h before being collected for transcriptome analysis. Three independent 
biological replicates (n = 10 seedlings each) for each treatment were conducted. Genes with adjusted P ≤ 0.05 and fold change > 2 or <0.5 (com-
pared to DMSO treatment) were considered to be significantly differentially expressed genes. Numbers next to the bars indicate the P-values. B) 
Expression pattern of differentially expressed Tartary buckwheat genes related to JA biosynthesis and signaling during R. solani infection, shown as a 
heatmap of log2FC at the 6-, 14-, and 22-h time points relative to the control samples. Red and blue indicate upregulation and downregulation, 
respectively. Intensity of the colors is proportional to the log2FC. TGL, triacylglycerol lipase; LOX, 13-lipoxygenase; AOS, allene oxide synthase; 
AOC, allene oxide cyclase; OPR, (9S,13S)-12-oxo-phytodienoic acid reductase; ACOX, acyl-CoA oxidase; ACAA, 3-oxoacyl-CoA thiolase; MEP, multi-
functional protein; JAR1, JASMONATE RESISTANT 1/jasmonate-amino synthetase; JAZ, JA ZIM domain; COI1, CORONATINE INSENSITIVE 1; ERF, 
ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR; PR, PATHOGENESIS RELATED. C) Venn diagram showing the number of Tartary buckwheat 
genes commonly and uniquely differentially expressed during R. solani infection and MeJA treatment. The leaves of 21-d-old Tartary buckwheat 
seedlings were inoculated with mycelial disks subcultured on PDA medium for 6 (FT 6 h), 14 (FT 14 h), or 22 h (FT 22 h), or treated with 50 μM 

MeJA for 1 (JA 1 h), 4 (JA 4 h), or 12 h (JA 12 h); the leaves were then harvested for transcriptome analysis. Three independent biological replicates 
(n = 10 seedlings each) for each treatment were conducted. Genes with adjusted P ≤ 0.05 and fold change > 2 or <0.5 (compared to DMSO treat-
ment for JA treatment or noninoculated control samples for R. solani infection) were considered to be significantly differentially expressed genes and 
used for analysis. FT, F. tataricum; JA, jasmonic acid. D) Most significantly enriched KEGG metabolic pathways of JA–induced or repressed differ-
entially expressed genes in Tartary buckwheat during R. solani infection. Numbers next to the bars indicate the P-values.   
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both R. solani infection and MeJA treatment remain un-
known. Moreover, their involvement in disease resistance 
needs to be elucidated. In particular, it is necessary to find 
a suitable method to narrow down the number of candidate 
disease resistance genes. We thus turned to GWAS in com-
bination with transcriptome analysis to mine for disease re-
sistance genes. To this end, we measured the disease index 
of 320 Tartary buckwheat accessions collected worldwide 
(Supplemental Data Set 43). The coefficient of variation 
(CV) was ∼65.6%, indicating that disease resistance is highly 
variable among Tartary buckwheat varieties, providing valu-
able genetic resources for cultivating varieties with high dis-
ease resistance. Then, using polymorphisms identified in our 
previous efforts to sequence the genome of these varieties 
(Zhang et al. 2021), we carried out GWAS to identify genomic 
regions significantly associated with R. solani resistance, using 
the disease index as phenotype (Supplemental Fig. S34). We 
identified a total of 122 significant single-nucleotide poly-
morphisms (SNPs) located on 7 out of the 8 chromosomes. 
We looked for candidate genes in 200 kb of flanking se-
quences on either side near each significant SNP, resulting 
in 16 genomic regions harboring 790 genes (Fig. 5A and  
Supplemental Data Set 44). 

A KEGG analysis revealed that 14 candidate genes are in-
volved in plant–pathogen interactions, confirming the reliabil-
ity of the GWAS results (Supplemental Fig. S35). Among them, 
homologs of WRKY transcription factor gene 
(FtPinG0809055500) are important regulator of plant defense 
responses (Pandey and Somssich 2009). 3-Ketoacyl-CoA syn-
thase (FtPinG0708058700) is a wax biosynthesis gene whose 
Arabidopsis homolog was shown to be involved in disease re-
sistance (Weidenbach et al. 2014; Wang, Zhi, et al. 2019;  
Zhang, Zhang, et al. 2019). Homologs of LysM domain recep-
tor–like kinase (FtPinG0100600300) are necessary in plant rec-
ognition of the fungal cell wall major component chitin (Wan 
et al. 2012; Ao et al. 2014; Paparella et al. 2014). Homologs of 
calcium-dependent protein kinase (FtPinG0100542000;  
Bundó and Coca 2016; Wei et al. 2016; Bundó and Coca 
2017; Lu et al. 2020; Wu et al. 2021) are positive, while homologs 
of cyclic nucleotide–gated ion channel (FtPinG0100588800;  
Moeder et al. 2011; Wang, Liu, et al. 2019) are negative regula-
tors of disease resistance. The identification of these plant– 
pathogen interaction–related genes confirm the reliability of 
the GWAS results and provide important clues for understand-
ing the genetic architecture of disease resistance in Tartary 
buckwheat. In addition, as plant disease resistance is tightly as-
sociated with the content of secondary metabolites, which is 
greatly affected by the environment, we compared the above 
GWAS regions with our previous metabolic GWAS 
(mGWAS) data (Zhao et al. 2023). We observed an overlap be-
tween 5 regions associated with 3 disease resistance metabo-
lites and disease index (Supplemental Data Set 45 and Fig. 
S36). The metabolites tangeretin (Liang et al. 2021), indole 
(Shen et al. 2018), and indole-3-carboxylic acid (Gamir et al. 
2012; Pastor-Fernández et al. 2019) have been previously 
shown to be involved in plant disease resistance. 

We integrated all GWAS results with the transcriptomes 
from R. solani inoculation and JA treatment to screen candi-
date disease resistance genes. We detected 106 genes located 
in 15 associated regions whose transcript levels respond to 
both R. solani infection and MeJA treatment (Fig. 5B and  
Supplemental Data Set 46). Among them, 49 genes were up-
regulated during R. solani infection and MeJA treatment. 
Most of these genes that have been previously shown in-
creased the plant disease resistance in other plant species, 
including homologs of aspartic proteinase (FtASP, 
FtPinG0302743900; Xia et al. 2004; Prasad et al. 2009), alcohol 
dehydrogenase (FtADH1, FtPinG0302737400; Shi et al. 2017), 
calcium-dependent protein kinase (FtPinG0100542000;  
Bundó and Coca 2016; Wei et al. 2016; Bundó and Coca 
2017; Lu et al. 2020; Wu et al. 2021), BTB/POZ domain- 
containing protein (FtPinG0607121100; Zhang, Gao, et al. 
2019), cellulose synthase (FtCSLG2, FtPinG0404615400;  
Choe et al. 2021), and carboxylesterase (FtCES18, 
FtPinG0809058900; Ko et al. 2016). The upregulation of these 
JA–induced genes during R. solani infection might contribute 
to JA–induced disease resistance responses. Sixteen genes 
were downregulated during R. solani infection while upregu-
lated after MeJA treatment. Most of these genes that were 
previously shown have disease resistance ability in other 
plant species, including homologs of an ABC transporter 
gene (FtPinG0404610000; Bienert et al. 2012; Sasse et al. 
2016; Khare et al. 2017), E3 ubiquitin-protein ligase 
(FtPinG0404612300; Karki et al. 2021), ferredoxin 
(FtPinG0707939600; Huang et al. 2007; Ger et al. 2014;  
Wang et al. 2018; Cui et al. 2021), and glutamate receptor 
(FtPinG0708049000; Liu et al. 2021). The downregulation of 
these JA–induced resistance genes during R. solani infection 
might be necessary for pathogens to infect plant cells suc-
cessfully. In summary, the majority of the overlapping genes 
obtained by GWAS and transcriptomics were related to dis-
ease resistance, suggesting that the combination of GWAS 
with transcriptome data can be an effective strategy for 
screening candidate disease resistance genes. 

JA–induced FtASP inhibits R. solani AG4-HGI 3 
infection by suppressing fungal growth 
To clarify the functions of candidate disease resistance genes 
and verify the efficiency of our strategy combining GWAS 
with transcriptomes in disease resistance gene screening, 
we chose candidate genes for experimental exploration: 5 
genes identified by GWAS (FtASP, FtADH1, FtPG1, FtCES18, 
and FtCSLG2) that are significantly upregulated during R. so-
lani infection and following MeJA treatment and 1 gene iden-
tified by GWAS (FtKCS11) that is significantly downregulated 
during R. solani infection but is upregulated following MeJA 
treatment (Fig. 5B). We heterologously expressed all genes in-
dividually in Arabidopsis and subjected their leaves to disease 
resistance assays (Supplemental Fig. S37). Five genes (FtASP, 
FtADH1, FtPG1, FtCES18, and FtKCS11) resulted in enhanced 
disease resistance (Figs. 6, S38, and S39). One gene  
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(FtCSLG2) showed suppressed disease resistance 
(Supplemental Figs. S38 and S39). Therefore, all genes tested 
in this assay changed plant disease resistance, confirming the 
high efficiency of our strategy combining GWAS with plant– 

pathogen interaction and phytohormone-related transcrip-
tomes for exploitation of disease resistance genes. 

It is worth noting that FtPinG0302743900, encoding an as-
partic protease (FtASP), 1 of the candidate proteins interacting 
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Figure 4. JA–induced FtCYP94C1 improves disease resistance of Tartary buckwheat to R. solani AG4-HGI 3. A) Phylogenetic tree illustrating the re-
latedness of Tartary buckwheat CYPs (Ft) to Arabidopsis CYPs (Atxg). The full-length amino acid sequences were used for phylogenetic analysis based 
on the neighbor-joining method. Only a subset of CYPs with high amino acid similarity to FtCYP94C1 is shown. The scale bar at the bottom represents 
the number of expected substitutions per site. Red represents FtCYP94C1. B, C) Relative FtCYP94C1 expression levels during R. solani infection B) and 
MeJA treatment C). For R. solani infection, the leaves of 21-d-old Tartary buckwheat seedlings were inoculated with mycelial disks subcultured on PDA 
medium for 6, 14, or 22 h B) or treated with 50 μM MeJA for 1, 4, or 12 h C) and then collected for transcriptome analysis. Expression levels are es-
timated as FPKM values. Data show the arithmetic mean ± SD from 3 biological replicates (n = 10 seedlings each). Different letters indicate significant 
differences at adjusted P < 0.05 (corrected using the Benjamini–Hochberg method). D) Phenotype of Arabidopsis lines heterologously expressing 
FtCYP94C1 and infected with R. solani AG4-HGI 3. The detached leaves of 2-wk-old Arabidopsis seedlings were inoculated with subcultured mycelial 
disks for 2 d. The Arabidopsis leaves of wild-type (Col-0) or from lines transformed with the empty vector (EV) control were used as negative controls. 
The phenotypes were observed in leaves of 3 Arabidopsis seedlings (n = 3). The experiments were performed 3 times using different batches of 
Arabidopsis seedlings. Photographs from 1 representative experiment are shown. Scale bars, 1 cm. E, F) Disease incidence E) and disease index F) 
of Arabidopsis lines heterologously expressing FtCYP94C1 (OE1 and OE2) infected with R. solani AG4-HGI 3. Leaves were treated as above, and 
the disease index was evaluated 2 d later. Data show the arithmetic mean ± SD from 3 biological replicates (n = 5). Different letters indicate significant 
differences at P < 0.01 (1-way ANOVA, Tukey’s posttest). The experiment was performed 3 times using different batches of Arabidopsis seedlings with 
similar results. G) Arabidopsis lines heterologously expressing FtCYP94C1 accumulate JA derivates and flavonoids. Two-week-old Arabidopsis seedlings 
were used for metabolite analysis. Four independent biological replicates (n = 10) for each treatment were conducted. Red and blue indicate upre-
gulation and downregulation, respectively. Intensity of the colors is proportional to the metabolite content.   
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with the virulence protein RsYTHDC, showed the highest ex-
pression during R. solani inoculation and was significantly up-
regulated following MeJA treatment and was also identified 
by GWAS. Haplotype analysis indicated that the 320 Tartary 
buckwheat accessions can be divided into 2 main haplotypes 
for this gene, with the C-haplotype exhibiting a higher disease 
resistance than the T-haplotype (Fig. 6A). Accessions with the 
C-haplotype were widely distributed, while those harboring the 
T-haplotype were mainly distributed in northern China 
(Supplemental Fig. S40). Reverse transcription quantitative 
PCR (RT-qPCR) analysis determined that FtASP expression is 
negatively correlated with the disease index in different 
Tartary buckwheat accessions, confirming the disease resist-
ance ability of FtASP (Fig. 6B). The heterologous expression of 
FtASP in Arabidopsis had no effect on naïve plants but signifi-
cantly improved their resistance to R. solani AG4-HGI 3 (Figs. 6, 
D and E, and S41 to S43). Moreover, the addition of recombin-
ant purified full-length FtASP and its first half (Supplemental 
Fig. S44) inhibited the growth of R. solani AG4-HGI 3, while 

the addition of the second half of FtASP did not affect fungal 
growth (Figs. 6F and S45). Previous work had indicated that as-
partic proteases are involved in plant resistance to both bacter-
ial and fungal pathogens (Xia et al. 2004; Prasad et al. 2009;  
Wang et al. 2022). We therefore speculate that FtAPS is a vital 
component of resistance to R. solani in Tartary buckwheat and 
potentially other pathogens. However, a protease assay re-
vealed that FtASP has no protease activity (Supplemental 
Fig. S46); rather, the N-terminal protein sequence 
GTPLKFNTTLLSINKVGSGGTTI (amino acids 57 to 79) showed 
a high probability to be an antimicrobial peptide (Waghu and 
Idicula-Thomas 2020), suggesting that FtASP might not func-
tion as a protease but as an antimicrobial peptide. 

Discussion 
R. solani is a destructive and widespread fungal pathogen 
with significant scientific and economic importance (Dean 
et al. 2012). A better understanding of its pathogenicity is 
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Figure 5. The integration of GWAS and transcriptomics identifies 106 genes associated with Tartary buckwheat disease resistance to R. solani 
AG4-HGI 3. A) Manhattan plot of the GWAS results using disease index in 320 Tartary buckwheat accessions as phenotype. Seven-day-old 
Tartary buckwheat seedlings were inoculated with a 50× diluted subcultured mycelial solution, and the disease index was evaluated 5 d later. 
The mean values of the disease index from 3 biological replicates (n = 10) for each accession were used for GWAS analysis. The red dotted line 
represents the significance threshold. B) Heatmap representation of the expression pattern of GWAS–identified genes that were both differentially 
expressed during infection with R. solani (Ft; top) and following MeJA treatment (JA; bottom). The mean FPKM values of 3 biological replicates 
(n = 10) during R. solani infection or MeJA treatment were used to calculate the relative expression level of these genes (shown as log2FC relative 
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synthase-like protein G2, FtPinG0404615400; FtKCS11, 3-ketoacyl-CoA synthase 11 like, FtPinG0708058700; FtCES18, probable carboxylesterase 18, 
FtPinG0809058900.   

12 | THE PLANT CELL 2023: Page 1 of 26                                                                                                                            He et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koad118/7146951 by Agricultural Inform

ation Institute, C
AAS user on 15 June 2023

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data


critical to develop effective disease resistance strategies. 
Isolates from some R. solani AGs (AG3, AG5, and AG8) ex-
hibit a limited host range, while those in AG1 and AG2 can 
infect a broader spectrum of host plants (Wibberg et al. 
2013). The universality and complexity of host range present 
great challenges for the study of the mechanisms underlying 
pathogenicity. At present, due to its economic importance, 
most research has concentrated on R. solani AG1-IA, the pre-
dominant causal agent of rice sheath blight disease, while the 
basis of pathogenicity of other isolates that infect other eco-
nomically important crops has yet to be studied. Here, we de-
monstrated that a R. solani AG4 isolate (AG4-HGI 3), 
originally identified from Tartary buckwheat, could infect 
an extensive range of host plants, including plants in the 
Poaceae, Brassicaceae, and Leguminosae, representing a simi-
lar host range to that determined for AG1 (Wibberg et al. 
2013). To investigate the genetic basis of its wide range of 
host plants, we sequenced and assembled the genome of R. 
solani AG4-HGI 3. Notably, we established that R. solani 
AG4-HGI 3 was a multinucleus isolate, with a variable num-
ber of nuclei number in a single cell. The specificities of this 
isolate bring great difficulties to genome assembly, resulting 
in the inability to reach chromosome-level scaffolding (Hane 
et al. 2014; Duan et al. 2022). The assembled genome of R. so-
lani AG4-HGI 3 was larger than that of other R. solani isolates, 
which might be also due to the higher number of nuclei with-
in a single cell (Takashima et al. 2018). Comparative genomic 
analysis showed that R. solani AG4-HGI 3 possessed abun-
dant carbohydrate degradation–related genes and secreted 
proteins encoding genes, which might be associated with 
its extensive host range. Transcriptome analysis revealed 
that the expression of numerous genes in R. solani increased 
following 14 h of infection, with nearly half of CAZyme genes 
being upregulated at this time point, suggesting that this per-
iod may be necessary for R. solani AG4-HGI 3 infection and 
plant cell wall degradation. Similar results were previously 
obtained following infection of rice with R. solani AG1-IA, 
with most genes being differentially expressed at 18-h post-
inoculation (Zheng et al. 2013). In addition, abundant patho-
genesis–related genes were upregulated during R. solani 
infection, including some encoding key effectors previously 
identified as essential for R. solani pathogenesis such as pro-
teins with NUDIX, NACHT, or BTB domains (Li, Guo, et al. 
2021; Li, Li, et al. 2021). Our findings therefore add to the 
knowledge necessary to help reveal the genetic and biological 
mechanisms during R. solani pathogenicity. 

Previous research indicated that genes involved in plant hor-
mone signaling are differentially expressed during R. solani in-
fection (Zrenner et al. 2021) and elevating JA levels enhanced 
rice resistance against R. solani (Taheri and Tarighi 2010). 
However, how JA participates in the regulation of plant disease 
resistance has yet to be fully uncovered. Here, we identified 
numerous JA–induced genes as being involved in the 
Tartary buckwheat response to R. solani infection. Among 
them, FtCYP94C1 was a negative regulator of the typical JA sig-
naling pathway (Koo et al. 2011; Heitz et al. 2012; Koo et al. 

2014), while a positive modulator of disease resistance–related 
flavonoid biosynthesis (Poudel et al. 2019). Combined with the 
enhanced disease resistance and metabolomic alterations of 
Arabidopsis lines heterologously expressing this gene, we sug-
gest that FtCYP94C1 enhances disease resistance of Tartary 
buckwheat by regulating flavonoid biosynthesis rather than 
via the typical JA signaling pathway. In addition, we detected 
several JA–induced genes that were involved in Tartary buck-
wheat disease resistance. However, due to the complexity of 
plant disease, there is no universal relationship between classes 
of genes and pathogen resistance. For instance, some aspartic 
proteases (Xia et al. 2004; Prasad et al. 2009), cellulose 
synthases (Choe et al. 2021), alcohol dehydrogenases (Shi 
et al. 2017), and carboxylesterases (Ko et al. 2016) enhance dis-
ease resistance, while others suppress disease resistance 
(Hernández-Blanco et al. 2007; Liu et al. 2014; Wang et al. 
2022). Here, we showed that the protease-like protein FtASP 
exhibited no aspartic protease activity, although it did inhibit 
fungal growth through the activity of its N-terminal region. As 
some N-terminal peptides were found to exert antibacterial 
function and exhibit a wide spectrum of antimicrobial activity 
(Zhao et al. 2020), we speculate that FtASP may function as an 
antimicrobial peptide to inhibit R. solani growth. In summary, 
the exploration of these plant defense–related genes will en-
rich our understanding of how plant hormones regulate plant 
disease resistance, with implications for accelerating the mo-
lecular breeding of disease-resistant varieties of economically 
important crop species. 

The exploitation of genetic variation in natural population 
via GWAS is an effective strategy for the identification of dis-
ease resistance genes (Kankanala et al. 2019; Molla et al. 2020). 
However, insufficient marker density, linkage disequilibrium, 
and high false-positive rates represent a severe challenge for 
functional validation of candidate resistance genes (Shu 
et al. 2021). The combination of GWAS and transcriptome 
analysis, as employed here, can overcome these limitations 
and hence accurately identify critical candidate resistance 
genes. Although the integration of GWAS and transcriptome 
analysis has been used to identify disease resistance genes in 
the past (Wen et al. 2018; Yao et al. 2020; Shu et al. 2021), 
most of these studies only explored comparisons between 
the transcriptomes of resistant and susceptible plants. As 
large-scale transcriptome data are only available in a few major 
crops, some systematically well-developed analysis methods 
(such as summary data–based Mendelian randomization 
[SMR]; Zhu et al. 2016) could not be widely used to integrate 
GWAS and RNA-seq data. Here, by combining the results from 
R. solani inoculation and JA–mediated transcriptome analyses, 
we determined that the JA signaling gene FtCYP94C1 en-
hanced resistance to R. solani AG4-HGI 3 in Tartary buckwheat 
apparently by promoting the biosynthesis of disease resist-
ance–related flavonoids. By combining transcriptomes ob-
tained during the plant–pathogen interaction and following 
JA treatment with GWAS, we identified 106 candidate genes 
that may be associated with disease resistance, which we argue 
that it is an efficient approach to greatly reduce the number of  
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Figure 6. JA–induced FtASP improves disease resistance of Tartary buckwheat to R. solani AG4-HGI 3. A) Box plots of the disease index in Tartary 
buckwheat accessions harboring the C-haplotype (53 accessions), the T-haplotype (210 accessions), and the Y(C/T)-haplotype (54 accessions). The 
data are based on the mean disease index values from 3 biological replicates (n = 10) for each accession. *P < 0.05 and ****P < 0.0001, as calculated 
using 2-tailed Student’s t-test. B) Relative FtASP expression levels in different Tartary buckwheat accessions. The mean values from 3 biological re-
plicates (n = 10) for each accession were used for analysis. The formula, r-value, and P-value of the regression line were shown. C) Phylogenetic tree 
for ASP proteins using full-length amino acid sequences from Tartary buckwheat (FtASP) and other plants. The phylogenetic tree was reconstructed 
using the neighbor-joining method. Only a subset of ASPs with high amino acid similarity to FtASP is shown. The scale bar at the bottom represents 
the number of expected substitutions per site. Red represents FtASP. D, E) Incidence D) and disease index E) of Arabidopsis lines heterologously 
expressing FtASP (OE1, OE2, and OE3) infected with R. solani AG4-HGI 3. The detached leaves of 2-wk-old Arabidopsis seedlings were inoculated 
with the subcultured mycelial disks, and the disease index was evaluated after 2 d. The Arabidopsis leaves of wild-type (Col-0) and lines transformed 
with the empty vector (EV) control were used as negative controls. Data show the arithmetic mean ± SD from 3 biological replicates (n = 5 seedlings 
each). Different letters indicate significant differences at P < 0.01 (1-way ANOVA, Tukey’s posttest). The experiment was performed 3 times using 
different batches of Arabidopsis seedlings with similar results. F) Phenotype of Arabidopsis lines heterologously expressing FtASP infected with                                                                                                                                                                                            

(continued)  
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candidate genes identified through each separate analysis and 
likely reduces the false-positive identification of candidate re-
sistance genes. In conclusion, our strategy efficiently identified 
key components of the R. solani pathogenicity response in 
Tartary buckwheat, which can be investigated in other crops 
susceptible to this strain with broad host range. Further, mul-
tiomic analysis such as that presented in this work will en-
hance the understanding of pathogenicity of other diseases 
in other agronomically important crop species, thus streamlin-
ing the identification of candidate resistance genes for molecu-
lar breeding of disease resistance. 

In summary, our study demonstrated that R. solani 
AG4-HGI 3 exhibited a larger genome size and harbored 
more protein-coding genes than most other R. solani isolates. 
Moreover, the expansion of pathogenicity genes might be re-
sponsible for the broad host range of R. solani AG4-HGI 3. In 
addition, some jasmonate-induced genes in Tartary buck-
wheat enhanced the resistance to R. solani. These results 
will enrich the knowledge of pathogenicity in R. solani and 
hence accelerate the molecular breeding of resistant varieties 
in economically important crops. 

Materials and methods 
R. solani AG4-HGI 3 isolates and culture conditions 
The strain R. solani AG4-HGI 3 was isolated from Tartary buck-
wheat (F.tataricum [L.] Gaertn.) in the field and characterized as 
AG4-HGI 3 (Li, Zhang, et al. 2021). This fungal isolate causes 
sunken lesions and dark brown symptoms on the root and 
stem of Tartary buckwheat. The cultures of R. solani AG4-HGI 
3 were revived from stock cultures maintained at −80 °C by pla-
cing mycelial disks on fresh potato dextrose agar (PDA) for 5 d, 
at 28 °C, in the dark. The isolates were then subcultured on fresh 
PDA for 5 d or potato dextrose broth (PDB) for 3 d, at 28 °C, in 
the dark before being used for experiments. Nuclei in hyphae 
were stained using DAPI according to the method described 
previously (Li, Guo, et al. 2021; Li, Li, et al. 2021). 

Genome assembly and comparative genomics 
The pathogen subcultured on PDB medium was used to extract 
the genomic DNA via a Fungal DNA Kit (D3390-02, Omega 
BioTek, Norcross, USA), according to the manufacturer’s in-
structions. Purified DNA was quantified on a TBS-380 fluorom-
eter (Turner BioSystems Inc., Sunnyvale, CA, USA). The genome 
was sequenced using PacBio Sequel Single Molecule Real Time 
(SMRT) and Illumina sequencing platforms at Shanghai 
Majorbio Biopharm Biotechnology Co., Ltd., China. The genome 

size and heterozygosity of R. solani AG4-HGI 3 were estimated 
based on the distribution of 17-mers using Meryl (Rhie et al. 
2020) and GenomeScope v1.0 (https://github.com/schatzlab/ 
genomescope; 2017). The Illumina short reads were quality con-
trolled using fastp v0.23.0 (https://github.com/OpenGene/ 
fastp; Chen et al. 2018). The PacBio long reads were assembled 
using CANU v1.7 (http://canu.readthedocs.io/en/latest/; Koren 
et al. 2017). The assembled contigs were corrected and polished 
through Illumina short reads using RACON (https://github. 
com/lbcb-sci/racon; Vaser et al. 2017). For annotation, the 
open reading frames (ORFs) of genes were predicted using 
Maker 2 v2.31.9 (http://www.yandell-lab.org/software/maker. 
html; Cantarel et al. 2008) and annotated through alignment 
against the NR, Swiss-Prot, Pfam, GO, COG, and KEGG data-
bases using the sequence alignment tools BLAST, Diamond 
v0.8.35 (https://github.com/bbuchfink/diamond; Buchfink 
et al. 2015) and HMMER v3.1b2 (http://www.hmmer.org/;  
Eddy 1998). The rRNA and tRNA in the genome were predicted 
using Barrnap 0.4.2 (https://github.com/tseemann/barrnap/;  
Seemann 2014) and tRNAscan-SE v 1.3.1 (http://lowelab.ucsc. 
edu/tRNAscan-SE/; Lowe and Eddy 1997). Repeat regions 
were masked using RepeatMasker v4.0.7 (http://www. 
repeatmasker.org/RepeatMasker/; Tarailo-Graovac and Chen 
2009). Predicted secreted proteins were defined as proteins 
with a signal peptide using SignalP v5.0 (https://services. 
healthtech.dtu.dk/service.php? SignalP-5.0; Almagro 
Armenteros et al. 2019) and no transmembrane domains using 
TMHMM v2.0 (https://services.healthtech.dtu.dk/service.php? 
TMHMM-2.0). CAZymes were identified by applying dbCAN2 
(https://bcb.unl.edu/dbCAN2/; Zhang, Yohe, et al. 2018; 
Zhang, Logacheva, et al. 2018). The Pathogen Host Interaction 
database (PHI-base, http://www.phi-base.org; Winnenburg 
et al. 2006) was used to find sequence homology relative to 
known virulence and pathogenicity markers. The effector pro-
teins were predicted using effectorP v3.0 (https://effectorp. 
csiro.au; Sperschneider and Dodds 2022). 

OrthoMCL v1.4 (http://www.orthomcl.org; Li et al. 2003) 
was used to construct orthologous gene families. MUSCLE 
v3.7 (http://drive5.com/muscle; Edgar 2004) was used to align 
single-copy orthologous genes. RAxML v8.0.19 (https://cme. 
h-its.org/exelixis/web/software/raxml; Stamatakis 2014) was 
used to construct the maximum likelihood–based phylogen-
etic tree by employing sequence alignments with M. oryzae as 
the outgroup. The unfiltered alignment and phylogenetic tree 
of are provided as Supplemental Files 1 and 2. CAFÉ v1.6 
(https://sourceforge.net/projects/cafehahnlab) was used to 
determine the expansion and contraction of orthologous 
gene families. Synteny was analyzed using MUMmer v3 

(Figure 6. Continued)  
R. solani AG4-HGI 3. Leaves were treated as above. Phenotypes were observed from the leaves of 3 Arabidopsis seedlings (n = 3). The experiment was 
performed 3 times using different batches of Arabidopsis seedlings. Photographs from 1 representative experiment are shown. Scale bars, 1 cm. G) 
Inhibitory effect of recombinant FtASP (1 to 225), FtASP-N (1 to 112), and FtASP-C (113 to 225) proteins on the growth of R. solani AG4-HGI 
3. Purified recombinant proteins were added to PDB medium preinoculated with R. solani AG4-HGI 3. The effects of each recombinant protein 
were evaluated after culture for 2 d. The phenotypes were observed in 3 biological replicates (n = 3). The experiment was performed 3 times using 
different batches of purified recombinant proteins with similar results. Photographs from 1 representative experiment are shown.   
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(https://mummer.sourceforge.net/; Kurtz et al. 2004), and the 
Circos plot was drawn using shinyCircos (https://github.com/ 
YaoLab-Bioinfo/shinyCircos; Yu et al. 2018). Genes were an-
notated with GO annotation using InterProScan v5.53 to 
87.0 (http://www.ebi.ac.uk/interpro/search/sequence/; Jones 
et al. 2014). 

Transcriptome analysis 
The surface-sterilized Tartary buckwheat seeds were grown for 
21 d at 22 °C (day/night) under long-day conditions (16-h light/ 
8-h dark). For the transcriptome analysis of the R. solani–Tartary 
buckwheat interaction, mycelial disks subcultured on PDA me-
dium were used to infect the leaves of Tartary buckwheat 
(Chuanqiao 1#) seedlings for 6, 14, and 22 h. For MeJA treat-
ment, leaves of Tartary buckwheat seedlings were treated 
with 50 μM MeJA (W341002, Sigma-Aldrich, Taufkirchen, 
Germany) for 1, 4, or 12 h. Three independent biological repli-
cates for each treatment were conducted. Each replicate was 
obtained by pooling samples from 10 seedlings. Tartary buck-
wheat leaves were flash-frozen in liquid nitrogen and ground 
to a fine powder. Total RNA was extracted with TRIzol reagent 
(15596026, Invitrogen, Carlsbad, USA); genomic DNA was 
removed using DNase I (2270A, TaKara, Kusatsu, Japan). 
RNA-seq sequencing libraries were prepared using a TruSeq 
RNA sample preparation Kit (RS-122-2001) from Illumina 
(San Diego, USA) and sequenced with an Illumina HiSeq X 
Ten/Nova Seq 6000 instrument. Raw paired-end reads were 
trimmed and quality controlled by SeqPrep (https://github. 
com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/ 
sickle) with default parameters. Then, the clean reads were 
aligned to the reference genome of R. solani AG4-HGI 3 and 
Tartary buckwheat (HERA) with orientation mode using 
HISAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml) soft-
ware (Kim et al. 2015), respectively. The mapped reads for 
each sample were assembled by StringTie (http://ccb.jhu.edu/ 
software/stringtie/index.shtml? t = example) in a reference- 
based approach (Pertea et al. 2015). The expression level of 
each transcript was calculated according to the fragments per 
kilobase of transcript per million fragments mapped (FPKM) 
method using RSEM (http://deweylab.biostat.wisc.edu/rsem/;  
Li and Dewey 2011). Differential expression analysis was per-
formed using DESeq2 (Love et al. 2014), DEGseq (Wang et al. 
2010) and EdgeR (Robinson et al. 2010). Genes with adjusted 
P ≤ 0.05 (corrected using the Benjamini–Hochberg method) 
and fold change >2 or <0.5 (compared to DMSO treatment 
for MeJA treatment and compared to noninoculated control 
samples for R. solani infection) were considered to be signifi-
cantly differentially expressed genes. Functional enrichment of 
these differentially expressed genes was analyzed using the 
GO and KEGG databases. 

Recombinant protein purification and protease 
activity assay 
Full-length cDNAs of RsYTHDC, RsDAD, FtASP, FtASP-N, and 
FtASP-C were amplified and inserted into the pET-28a 

expression vector. Recombinant proteins were produced in 
Escherichia coli BL21 (DE3) cells (CD601-02, TransGen, Beijing, 
China) with 0.1 mM isopropyl-D-1-thiogalactopyranoside 
(IPTG, I6758, Sigma-Aldrich, Taufkirchen, Germany) at 28 °C 
for 12 h. After sonication (200 W, 0 °C, 30 min; ultrasound for 
5 s every 10 s), the crude extracts were centrifuged at 
12,000 × g for 10 min, at 4 °C. Each supernatant was then puri-
fied using Ni-NTA Agarose (30210, Qiagen, Hilden, Germany). 
Immunoblotting of His-RsYTHDC, His-RsDAD, and His-FtASP 
was performed with anti-His (1:2,000; CW0286, CWBIO, 
Beijing, China) antibody. The molecular weight was marked 
using Rainbow Prestained Broad Molecular Weight Protein 
Marker (RTD6106, Real-Times Biotechnology Co., Ltd., Beijing, 
China). Protease activity was assessed using an EnzChek 
Protease Assay Kit (E6639, Invitrogen, Carlsbad, USA) following 
the manufacturer’s instructions. The Endoproteinase Asp-N se-
quencing grade (ENDOARGS-RO, Roche Diagnostics Gmbh, 
Mannheim, Germany) was used as a positive control. Three bio-
logical replicates were conducted, and the experiments were 
performed 3 times. Primer sequences are listed in  
Supplemental Data Set 47. The antimicrobial peptide was pre-
dicted using CAMP (www.camp.bicnirrh.res.in; Waghu and 
Idicula-Thomas 2020). 

Subcellular localization of RsYTHDC and RsDAD 
Full-length cDNAs of RsYTHDC and RsDAD were amplified 
and inserted into the pCAMBIA1300-GFP vector. 
p2300-35s-H2B-mCherry was used as a nuclear marker. The 
plasmid was transferred into N. benthamiana leaves using 
Agrobacterium (Agrobacterium tumefaciens) strain 
GV3101-mediated transient infiltration (Wang et al. 2023). 
Subcellular localization was observed using a laser scanning 
confocal microscope (Zeiss LSM900) with the wavelengths 
of 488 (excitation)/500 to 530 nm (emission) for GFP and 
561 (excitation)/590 to 640 nm (emission) for mCherry. 
Primer sequences are listed in Supplemental Data Set 47. 

Pull-down experiments and mass spectrometry 
Pull-down and mass spectrometry assays were performed as 
described with some modifications (Brymora et al. 2004). 
Recombinant His-RsYTHDC and His-RsDAD proteins were 
used as bait. Total protein from Tartary buckwheat seedling 
was used as prey. The bait proteins were mixed with soluble 
protein extracts from Tartary buckwheat seedlings for 2 h at 
4 °C and then immobilized on a Ni-NTA Agarose (30210, 
Qiagen, Hilden, Germany). Weakly bound proteins were re-
moved by washing 3 times with wash buffer (10 mM 

phosphate-buffered saline [PBS pH 8.0], 20 mM imidazole, 
and 0.005% [v/v] Tween 20). After elution with elution buffer 
(10 mM PBS, pH 8.0, and 250 mM imidazole), the superna-
tants were subjected to 10% SDS–PAGE followed by 
Coomassie Brilliant Blue staining. The gel was excised, tryptic 
digest, and subjected to LC-MS/MS analyzed by Shanghai 
Luming Biological Technology Co., Ltd. (Shanghai, China) ac-
cording to methods described elsewhere (Qin et al. 2019).  

16 | THE PLANT CELL 2023: Page 1 of 26                                                                                                                            He et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koad118/7146951 by Agricultural Inform

ation Institute, C
AAS user on 15 June 2023

https://mummer.sourceforge.net/
https://github.com/YaoLab-Bioinfo/shinyCircos
https://github.com/YaoLab-Bioinfo/shinyCircos
http://www.ebi.ac.uk/interpro/search/sequence/
https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://ccb.jhu.edu/software/hisat2/index.shtml
http://ccb.jhu.edu/software/stringtie/index.shtml?%20t&thinsp;=&thinsp;example
http://ccb.jhu.edu/software/stringtie/index.shtml?%20t&thinsp;=&thinsp;example
http://deweylab.biostat.wisc.edu/rsem
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data
http://www.camp.bicnirrh.res.in
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad118#supplementary-data


BiFC assay 
Full-length cDNA of FtSHMT was amplified and inserted into 
the pSPYNE-35S vector. Full-length cDNA of RsDAD was 
amplified and inserted into the pSPYCE-35S vector. The con-
structs were introduced into N. benthamiana leaves using 
Agrobacterium (strain GV3101)-mediated infiltration. 
Fluorescence was observed using a laser scanning confocal 
microscope (Zeiss LSM900). Primer sequences are given in  
Supplemental Data Set 47. 

Generation of transgenic lines and plant growth 
Total RNA was extracted by using an RNApre Pure Plant Plus 
kit (DP441, Tiangen, Beijing, China); first-strand cDNA was 
synthesized with a HiScript III RT SuperMix for qPCR 
(R323-01, Vazyme, Nanjing, China). The coding sequence 
was cloned into pCAMBIA-1307. The N. benthamiana and 
Tartary buckwheat transient expression and the 
Arabidopsis (Arabidopsis thaliana) overexpression lines 
were conducted and generated by A. tumefaciens (strain 
GV3101)–mediated transformation, respectively (Clough 
and Bent 1998; Wang et al. 2023). Three biological replicates 
were conducted, and the experiments were performed 3 
times. Protein accumulation in N. benthamiana leaves was 
analyzed by immunoblotting with an anti-MBP (1:2,000; 
CW0288M, CWBIO, Beijing, China) antibody. Relative expres-
sion levels of Arabidopsis heterologous expression lines were 
analyzed by RT-qPCR. Three biological replicates were con-
ducted, and the experiments were performed 3 times. 
Primer sequences are given in Supplemental Data Set 47. 
The T-DNA insertion mutants aoc4 (SALK_124897C) and 
jar1 (SALK_030821C) T-DNA were obtained from Arashare. 
The myc2 myc3 myc4 triple mutant was described previously 
(Fernández-Calvo et al. 2011). All Arabidopsis genotypes were 
grown at 22 °C (day/night) under long-day conditions (16-h 
light/8-h dark). The phylogenetic tree of CYPs and ASPs was 
conducted using MEGAX based on the neighbor-joining 
method (Saitou and Nei 1987; Kumar et al. 2018). The unfil-
tered alignment and phylogenetic tree are provided as  
Supplemental Files 3 to 6. 

Treatment with phytohormones 
For Tartary buckwheat treated with different phytohor-
mones, 7-d-old Tartary buckwheat seedlings were pretreated 
with SA (1 mM, S7401, Sigma-Aldrich, Taufkirchen, Germany), 
MeJA (50 μM), GA (100 μM, 48870, Sigma-Aldrich, 
Taufkirchen, Germany), ethephon (1 mM, C0143, Sigma- 
Aldrich, Taufkirchen, Germany), or DMSO (negative control) 
for 3 h. Phenotypes were observed 3 d after onset of R. solani 
AG4-HGI 3 infection. Three biological replicates were con-
ducted and the experiments were performed 3 times. 

For Arabidopsis mutants treated with JA, the detached 
leaves of 2-wk-old Arabidopsis seedlings were pretreated 
with 50 μM MeJA or DMSO (negative control) for 3 h and 
then inoculated with subcultured mycelial disks for 2 d. 

Wild-type (Col-0) seedlings were used as negative control. 
Three biological replicates were conducted, and the experi-
ments were performed 3 times. 

Metabolome analysis of FtCYP94C1 overexpressing 
Arabidopsis 
Two-week-old Arabidopsis seedlings were used to conduct a 
widely targeted metabolite analysis (Want et al. 2010). Four 
independent biological replicates for each treatment were 
conducted. Each replicate was obtained by pooling samples 
from 10 seedlings. Whole freeze-dried seedlings were ground 
and extracted with prechilled 80% (v/v) methanol/water. 
Following centrifugation at 15,000 × g at 4 °C for 20 min, 
the supernatants were analyzed by using an ExionLC AD sys-
tem (SCIEX) coupled with a QTRAP 6500+ mass spectrom-
eter (SCIEX) by Novogene Co., Ltd. (Beijing, China). The 
analytical conditions were as follows: column, Xselect HSS 
T3 (2.5 μm, 2.1 × 150 mm); Solvent A, 0.1% (v/v) formic 
acid water, and Solvent B, 0.1% (v/v) formic acid acetonitrile. 
The gradient program was as follows: 2% B, 2 min; 2% to 
100% B, 15.0 min; 100% B, 17.0 min; 100% to 2% B, 
17.1 min; 2% B, 20 min. The QTRAP 6500+ mass spectrom-
eter was operated in positive/negative polarity modes with 
curtain gas of 35 psi, collision gas of medium, ionspray volt-
age of 5,500 V for positive and −4,500 V for negative, tem-
perature of 550 °C, and ion source gas of 1:60. 

Qualitative analysis was performed using multiple reaction 
monitoring (MRM) based on the Novogene database. The 
data files generated by HPLC-MS/MS were processed with 
SCIEX OS v1.4 to integrate and correct the peaks. The area 
of each peak represents the relative content of the corre-
sponding metabolite. The metabolites were annotated using 
the KEGG database (http://www.genome.jp/kegg/), HMDB 
database (http://www.hmdb.ca/), and Lipidmaps database 
(https://www.lipidmaps.org/). Principal components analysis 
(PCA), partial least squares discriminant analysis (PLS-DA), 
and univariate analysis (t-test) were performed to identify 
the differentially abundant metabolites. The metabolites 
with VIP (variable importance for the projection) > 1, 
P < 0.05, and |log2 FC| ≥ 1 were considered to be differential-
ly abundant. 

Flavonoids content analysis of Arabidopsis mutants 
Flavonoid contents were analyzed according to the method 
described previously (Zhang et al. 2021; He et al. 2022). 
Two-week-old Arabidopsis seedlings were freeze-dried and 
ground. The powder was extracted with prechilled 80% 
(v/v) methanol/water. The supernatant was analyzed by 
LC-MS (Agilent G6500 Series HPLC-QTOF). The content of 
flavonoids was calculated by comparing the HPLC peak 
area with authentic standards (Sigma-Aldrich, Taufkirchen, 
Germany). Three biological replicates were conducted, and 
each replicate was obtained by pooling samples from ten 
seedlings. The experiments were performed 3 times.  
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Screening candidate host plants and disease 
resistance evaluation 
For R. solani and Tartary buckwheat interaction, Tartary buck-
wheat seeds were germinated in petri plates containing wet fil-
ter paper at 22 °C. Seven days after germination, the seedlings 
were inoculated with 50× diluted subcultured mycelial solu-
tion for 5 d. Three biological replicates using 10 seedlings 
each were conducted. For validation of candidate virulence 
genes, detached transiently expressing N. benthamiana leaves 
were inoculated with subcultured mycelial disks for 2 d. Three 
biological replicates were conducted, and the experiments 
were performed 3 times. For the R. solani–Arabidopsis inter-
action, detached leaves of 2-wk-old Arabidopsis seedlings 
were inoculated with subcultured mycelial disks for 2 
d. Three biological replicates were conducted, and the experi-
ments were performed 3 times. For R. solani inoculation of 
other candidate host plant species, detached leaves of the ap-
propriate size were inoculated with subcultured PDA mycelial 
disks. Plants inoculated with PDA or PDB medium without 
fungus were used as negative controls. Relative pathogen bio-
mass was analyzed by measuring the abundance of the patho-
gen using qPCR of the internal transcribed spacer (ITS) region 
and normalized by plant biomass according the method de-
scribed previously (Wallon et al. 2020). Three biological repli-
cates were conducted, and the experiments were performed 3 
times. Primer sequences are listed in Supplemental Data Set 
47. Disease index evaluation, 3,30-diaminobenzidine (DAB) 
staining, and malondialdehyde (MDA) content analysis were 
conducted as previously described (Park et al. 2008;  
Bach-Pages and Preston 2018; Yin et al. 2020). Three biological 
replicates were conducted and the experiments were per-
formed 3 times. 

Genome-wide association analysis 
The resequencing data of 320 Tartary buckwheat accessions 
were obtained from published work (Zhang et al. 2021). 
GWAS was conducted using the method previously illu-
strated in Zhang et al. (2021). Briefly, the sequenced reads 
of Tartary buckwheat accessions were mapped to the refer-
ence genome of Tartary buckwheat (HERA; Zhang et al. 
2017) using BWA-MEM (Li 2013). SNP calling was performed 
using the GATK pipeline (McKenna et al. 2010). After filter-
ing (Quality > 30.0, Quality by Depth > 5.0, Fisher Strand 
< 60.0, and Depth > 5), a total of 1,095,350 high-quality 
SNPs (MAF > 0.05 and missing rate < 0.01) for 320 accessions 
were used to perform GWAS. The algorithm Efficient 
Mixed-Model Association eXpedited (EMMAx) was used to 
conduct all associations (Kang et al. 2010), with a significance 
threshold set to P = 1 × 10−5. 

Statistical analysis 
Data of gene relative expression levels and disease index are 
shown as means ± SD. Significant differences were assessed 
using chi-square tests, 2-tailed Student’s t-tests, 1-way and 
2-way analysis of variance (ANOVA, P = 0.01) performed 

by SPSS22 software (SPSS, Chicago, IL, USA). Statistical data 
are provided as Supplemental Data Set 48. 

Accession numbers 
The genome sequencing data of this project are available 
from the National Center for Biotechnology Information un-
der BioProject ID PRJNA917065. The raw transcriptome data 
of this project are available from the public database 
National Center for Biotechnology Information under 
BioProject ID PRJNA917064. The mass spectrometry proteo-
mics data are available from the ProteomeXchange 
Consortium via the PRIDE partner repository with the data 
set identifier PXD041641. The metabolome data are available 
from the CNCB under BioProject ID PRJCA016408. 
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Supplemental data 
The following materials are available in the online version of 
this article. 

Supplemental Figure S1. Phenotypes of crops inoculated 
with R. solani AG4-HGI 3. 

Supplemental Figure S2. DAPI staining of nuclei in R. so-
lani AG4-HGI 3 hyphae. 

Supplemental Figure S3. K-mer analysis for estimating the 
genome size of R. solani AG4-HGI 3. 

Supplemental Figure S4. Correlation between the 
protein-coding gene number and the genome size using lin-
ear regression analysis. 

Supplemental Figure S5. Circos plot showing the distribu-
tion of genes (I), transposons (II), CAZymes (III), secreted pro-
teins (IV), effectors (V), virulence genes (VI), the duplicated 
genes based on BUSCO (VII), and the syntenic relationship 
(inner Circos). 

Supplemental Figure S6. Circos plot showing the syntenic 
relationship between genomes of different isolates of R. solani. 

Supplemental Figure S7. The most significantly enriched 
GO terms in contracted gene families. 

Supplemental Figure S8. Correlation between genome 
size and the number of pathogenicity genes using linear re-
gression analysis. 

Supplemental Figure S9. Phenotype of Tartary buck-
wheat seedlings inoculated with R. solani AG4-HGI 3. 

Supplemental Figure S10. The most significantly enriched 
GO terms of upregulated genes in R. solani AG4-HGI 3 during 
infection of Tartary buckwheat.  
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Supplemental Figure S11. The most significantly enriched 
GO terms of expanded gene families with upregulated ex-
pression (up) or downregulated expression (down) in R. sola-
ni AG4-HGI 3 during infection of Tartary buckwheat. 

Supplemental Figure S12. The most significantly enriched 
KEGG metabolic pathways of expanded gene families (up, 
upregulated expression; down, downregulated expression) 
in R. solani AG4-HGI 3 during infection of Tartary buckwheat. 

Supplemental Figure S13. The most significantly enriched 
GO terms of contracted gene families with upregulated ex-
pression (up) or downregulated expression (down) in R. sola-
ni AG4-HGI 3 during infection of Tartary buckwheat. 

Supplemental Figure S14. The most significantly enriched 
KEGG metabolic pathways of contracted gene families 
(up, upregulated expression; down, downregulated expression) 
in R. solani AG4-HGI 3 during infecting Tartary buckwheat. 

Supplemental Figure S15. Immunoblot with anti-MBP 
antibody to detect virulence proteins following transient ex-
pression in N. benthamiana leaves. 

Supplemental Figure S16. Phenotypes observed on N. 
benthamiana leaves transiently expressing virulence genes. 

Supplemental Figure S17. Relative pathogen biomass of 
R. solani AG4-HGI 3 infecting N. benthamiana leaves transi-
ently expressing virulence genes. 

Supplemental Figure S18. MDA content of N. benthami-
ana leaves transiently expressing virulence genes and in-
fected with R. solani AG4-HGI 3. 

Supplemental Figure S19. Subcellular localization of 
RsYTHDC and RsDAD. 

Supplemental Figure S20. Immunoblot analysis with 
anti-His antibody to detect the purified recombinant 
His-RsYTHDC and His-RsDAD. 

Supplemental Figure S21. BiFC assay showing interac-
tions between FtSHMT and RsDAD in N. benthamiana leaf 
epidermal cells. 

Supplemental Figure S22. The most significantly enriched 
GO terms of different expressed genes in Tartary buckwheat 
during infection by R. solani AG4-HGI 3. 

Supplemental Figure S23. Phenotypes of Tartary buck-
wheat seedlings infected with R. solani AG4-HGI 3 and pre-
treated with SA, ET, GA, or JA. 

Supplemental Figure S24. The most significantly 
enriched GO terms of JA–induced differentially expressed 
genes in Tartary buckwheat during infection by R. solani 
AG4-HGI 3. 

Supplemental Figure S25. RT-qPCR analysis of FtCYP94C1 
expression level in leaves of Arabidopsis lines heterologously 
expressing FtCYP94C1. 

Supplemental Figure S26. Relative pathogen biomass of 
R. solani AG4-HGI 3 infected FtCYP94C1 overexpression lines. 

Supplemental Figure S27. DAB staining of Arabidopsis 
lines heterologously expressing FtCYP94C1 and infected by 
R. solani AG4-HGI 3. 

Supplemental Figure S28. Phenotypes observed on 
Tartary buckwheat leaves transiently overexpressing 
FtCYP94C1 and infected by R. solani AG4-HGI 3. 

Supplemental Figure S29. Phenotype of JA mutants 
(aoc4, jar1, and myc2 myc3 myc4) and wild-type (Col-0) 
plants inoculated with R. solani AG4-HGI 3 with or without 
pretreatment with JA. 

Supplemental Figure S30. Disease resistance of JA mu-
tants (aoc4, jar1, and myc2 myc3 myc4) and wild-type 
(Col-0) plants infected with R. solani AG4-HGI 3 with or with-
out pretreatment with JA. 

Supplemental Figure S31. Relative pathogen biomass in 
JA mutants (aoc4, jar1, and myc2 myc3 myc4) and wild-type 
(Col-0) plants inoculated with R. solani AG4-HGI 3 with or 
without pretreatment with JA. 

Supplemental Figure S32. PCA for the metabolome data 
of Arabidopsis lines heterologously expressing FtCYP94C1. 
Wild-type (Col-0) plants were used as negative control. 

Supplemental Figure S33. Flavonoid contents of JA mu-
tants (aoc4, jar1, and myc2 myc3 myc4) and wild-type 
(Col-0) plants with or without pretreatment with JA. 

Supplemental Figure S34. Quantile–quantile (Q–Q) plots 
of the disease index based on the EMMAx algorithm. 

Supplemental Figure S35. The most significantly enriched 
KEGG metabolic pathways of GWAS–identified genes in 
Tartary buckwheat during R. solani infection. 

Supplemental Figure S36. Overlapping GWAS signals be-
tween the disease index and the content of disease resist-
ance–associated metabolites (tangertin, indole, and 
indole-3-carboxylic acid). 

Supplemental Figure S37. RT-qPCR analysis of FtASP ex-
pression levels in leaves of Arabidopsis lines heterologously 
expressing FtASP. 

Supplemental Figure S38. Phenotype of Arabidopsis lines 
heterologously expressing the indicated genes identified by 
GWAS upon infection with R. solani AG4-HGI 3. 

Supplemental Figure S39. Disease resistance of Arabidopsis 
lines heterologously expressing the indicated genes identified by 
GWAS upon infection with R. solani AG4-HGI 3. 

Supplemental Figure S40. Geographical distribution of 
Tartary buckwheat accessions. 

Supplemental Figure S41. Relative pathogen biomass of 
Arabidopsis lines heterologously expressing FtASP and in-
fected with R. solani AG4-HGI 3. 

Supplemental Figure S42. DAB staining and MDA con-
tent of Arabidopsis lines heterologously expressing FtASP1 in-
fected with R. solani AG4-HGI 3. 

Supplemental Figure S43. Phenotypes observed on 
Tartary buckwheat leaves transiently overexpressing FtASP 
infected with R. solani AG4-HGI 3. 

Supplemental Figure S44. Immunoblotting with anti-His 
antibody to detect purified recombinant His-FtASP (1 to 
225), His-FtASP-N (1 to 112), and His-FtASP-C (113 to 225). 

Supplemental Figure S45. Biomass of R. solani AG4-HGI 3 
grown for 24 h in PDB medium containing purified recom-
binant His-FtASP (1 to 225), His-FtASP-N (1 to 112), or 
His-FtASP-C (113 to 225). 

Supplemental Figure S46. Protease activity assay of 
FtASP.  
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Supplemental Data Set 1. Summary of sequencing data of 
the R. solani AG4-HGI 3 assembly. 

Supplemental Data Set 2. Genome survey data statistics 
with k-mer frequency distribution. 

Supplemental Data Set 3. Description of the R. solani gen-
ome assembly. 

Supplemental Data Set 4. Evaluation of R. solani AG4-HGI 
3 sequencing results. 

Supplemental Data Set 5. Summary of repeat elements in 
the R. solani AG4-HGI 3 assembly. 

Supplemental Data Set 6. Summary of repeat elements in 
the genomes of 23 R. solani isolates and M. oryzae. 

Supplemental Data Set 7. Orthologous gene families 
among 23 R. solani isolates and M. oryzae. 

Supplemental Data Set 8. Number of gene families, specif-
ic family, genes in the family, and unique genes of 23 R. solani 
isolates and M. oryzae. 

Supplemental Data Set 9. List of expanded and con-
tracted gene families in R. solani AG4-HGI 3. 

Supplemental Data Set 10. Analysis of CAZymes in R. so-
lani AG4-HGI 3. 

Supplemental Data Set 11. Characterization of CAZymes 
in R. solani. 

Supplemental Data Set 12. Characterization of CAZymes 
involved in lignin, cellulose, hemicellulose, and pectin deg-
radation in R. solani. 

Supplemental Data Set 13. Genes encoding predicted se-
creted proteins in R. solani AG4-HGI 3. 

Supplemental Data Set 14. Predicted number of secreted 
proteins of R. solani. 

Supplemental Data Set 15. Genes encoding predicted ef-
fector proteins in R. solani AG4-HGI 3. 

Supplemental Data Set 16. Number of predicted effector 
proteins in R. solani. 

Supplemental Data Set 17. Predicted virulence genes in R. 
solani AG4-HGI 3. 

Supplemental Data Set 18. Genes encoding predicted 
interaction proteins between pathogens and plant hosts in 
R. solani AG4-HGI 3. 

Supplemental Data Set 19. Genes encoding predicted 
transporters in R. solani AG4-HGI 3. 

Supplemental Data Set 20. Genes encoding predicted 
transmembrane proteins in R. solani AG4-HGI 3. 

Supplemental Data Set 21. Predicted secondary metabol-
ite biosynthesis gene clusters in R. solani AG4-HGI 3. 

Supplemental Data Set 22. Summary of RNA-seq results 
in R. solani AG4-HGI 3 after infection of Tartary buckwheat. 

Supplemental Data Set 23. Upregulated genes in R. solani 
AG4-HGI 3 during the R. solani–Tartary buckwheat interaction. 

Supplemental Data Set 24. Gene number with different 
expression patterns in expanded gene families. 

Supplemental Data Set 25. Summary of the expression 
pattern of expanded gene families. 

Supplemental Data Set 26. Upregulated expanded gene 
families in R. solani AG4-HGI 3 during the R. solani–Tartary 
buckwheat interaction. 

Supplemental Data Set 27. Downregulated expanded 
gene families in R. solani AG4-HGI 3 during the R. solani– 
Tartary buckwheat interaction. 

Supplemental Data Set 28. Number of genes with differ-
ent expression patterns in contracted gene families. 

Supplemental Data Set 29. Summary of expression pat-
terns of contracted gene families. 

Supplemental Data Set 30. Upregulated contracted gene 
families in R. solani AG4-HGI 3 during the R. solani–Tartary 
buckwheat interaction. 

Supplemental Data Set 31. Downregulated contracted 
gene families in R. solani AG4-HGI 3 during the R. solani– 
Tartary buckwheat interaction. 

Supplemental Data Set 32. Upregulated genes encoding 
CAZymes in R. solani AG4-HGI 3 during R. solani–Tartary 
buckwheat interaction. 

Supplemental Data Set 33. Number of upregulated genes 
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