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Short summary 41 

  Genome resources generated for an elite wheat cultivar are analyzed, which has 42 

yielded new insights into the genomic changes in recent varietal improvement and 43 

subgenome diploidization and divergence in common wheat. This leads to the 44 

development of a homoeologous locus-based GWAS approach highly effective for 45 

unraveling the agronomic trait-associated loci and their superior haplotypes valuable 46 

for genomics-assisted breeding.  47 
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ABSTRACT  48 

Despite the progress made recently in crop genomics studies, the genomic changes 49 

brought by modern breeding selection are still poorly understood, thus hampering 50 

genomics-assisted breeding especially in the polyploid crops with compound genomes 51 

such as common wheat (Triticum aestivum). In this work, we constructed genome 52 

resources for the modern elite common wheat variety Aikang 58 (AK58). 53 

Comparisons between AK58 and the landrace cultivar Chinese Spring (CS) shed light 54 

on genomic changes occurred in recent wheat varietal improvement. Furthermore, we 55 

explored subgenome diploidization and divergence in common wheat and developed a 56 

homoeologous locus-based GWAS (HGWAS) approach, which was more effective 57 

than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A 58 

total of 123 major HGWAS loci were detected using the genetic population derived 59 

from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations 60 

of subgenomic homoeologs of the associated loci, were found in both parents and 61 

progenies, many of which could substantially improve wheat yield and related traits. 62 

We builded a website (available in https://triticeae.henau.edu.cn/aikang58/) in which 63 

data download of AK58 genome assembly sequence and annotation, blast analysis 64 

and Jbrowse could be performed. Our work enriches wheat genome resources, 65 

provides new insight into the genomic changes involved in modern wheat 66 

improvement, and suggests that efficient mining of elite HHs may contribute 67 

substantially to genomics-assisted breeding in common wheat and other polyploid 68 

crops. 69 

 70 

Key words: common wheat, genome sequencing, subgenome diploidization and 71 

divergence, homoeologous locus-based GWAS, homoeologous haplotypes, polyploid 72 

crops 73 
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 76 

INTRODUCTION  77 

Since the completion of Arabidopsis and rice genome sequence, dissecting and 78 

improving plant traits have entered the genomics era (Sun et al., 2022). The 79 

availability of genome sequences and high genome coverage molecular markers, e.g., 80 

single nucleotide polymorphism (SNP) markers, has greatly increased the efficiency 81 

of isolating agronomically important genes either by forward and reverse genetic 82 

research or using genome-wide association study (GWAS) (Gupta et al., 2019; Tibbs 83 

Cortes et al., 2021). This has led to a large burst of functionally characterized genes 84 

and thus improved understanding of the genetic architecture of many agronomic traits 85 

(Soyk et al., 2020). Aided by multi-omics and genome-editing technologies, the 86 

molecular mechanisms operating in trait formation are also being revealed at a fast 87 

pace (Weckwerth et al., 2020; Gao, 2021; Scossa et al., 2021). Together, these 88 

achievements are paving the way for genomics-assisted crop improvement especially 89 

in the crops with simpler diploid genomes such as rice and maize (Purugganan and 90 

Jackson, 2021; Varshney et al., 2021). However, as the majority of plant traits are 91 

complex and controlled by polygenes and affected by environmental conditions, 92 

prodigious efforts are still needed to deepen understanding of the genomic and 93 

molecular basis of agronomic traits. This is particularly relevant for the crops with 94 

large and complex polyploid genomes (Michael and Van Buren, 2015; May et al., 95 

2023).  96 

Up to 70% of the flowering plants on earth may be recent polyploids, and 97 

approximately 40% - 50% of the cultivated crops have polyploid genomes (Wood et 98 

al., 2009; Moghe and Shiu, 2014; Salman-Minkov et al., 2016). Many important food, 99 

fiber, and oil crops, such as common wheat (Triticum aestivum, AABBDD, 2n = 6x = 100 

42), upland cotton (Gossypium hirsutum, AADD, 2n = 4x = 52), and peanut (Arachis 101 

hypogaea, AABB, 2n = 4x = 40) are allopolyploids carrying two or more related but 102 

not identical subgenomes (Song et al., 2017; Zhuang et al., 2019). Compared to 103 
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diploid crops (e.g., rice and maize), each typical homoeologous locus in an 104 

allopolyploid include at least two subgenomic homoeologs, whose biological 105 

functions are frequently affected by non-functionalization, subfunctionalization, or 106 

neofunctionalization (Lynch and Conery, 2000; Ma and Gustafson, 2005; Jackson and 107 

Chen, 2010). Furthermore, unique to polyploids, parental homoeologs are subjected to 108 

reassortment in the offspring in hybridization breeding, which can generate many 109 

alternative combinations of subgenomic homoeologs. For example, in a biparental F2 110 

population of an allohexaploid crop such as common wheat, for each typical triad 111 

locus with three subgenomic orthologs, reassortment of allelic parental homoeologs 112 

will yield 27 (33) combinations of homoeologs, of which two are parental and 25 are 113 

newly formed. Some of these homoeolog combinations may confer improved traits 114 

than the corresponding locus of the better parent, and thus representing elite 115 

homoeologous haplotypes (HHs) valuable for enhancing both wheat genetic diversity 116 

and trait performance. But this aspect has seldom been investigated in depth and 117 

conscientiously exploited in polyploid crop improvement in the past. This is mainly 118 

caused by the lack of an efficient approach for detecting agronomically important 119 

homoeologous loci at genome-wide level in polyploid crops. The vast amount of 120 

GWAS investigations published to date for polyploid plants generally use one 121 

homoeolog from a single subgenome, rather than all homoeologs, in genotyping and 122 

association tests. Consequently, an alternative GWAS approach, which utilizes the 123 

molecular variations of all homoeologs as genotyping information to detect trait 124 

controlling genes, is needed, which will largely facilitate the mining and exploration 125 

of HHs in common wheat and other polyploids. 126 

Common wheat is not only a major staple crop in the world but also a model for 127 

studying the unique genome biology of polyploid plants (Dubcovsky and Dvorak, 128 

2007; Venske et al., 2019). Its A and D subgenomes were donated by T. urartu (AUAU, 129 

2n = 2x = 14) and Aegilops tauschii (DAetDAet, 2n = 2x = 14), respectively, while the 130 

B subgenome might be derived from an unidentified species related to Ae. speltoides 131 

(Levy and Feldman, 2022). Two polyploidization events occurred in the formation of 132 
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hexaploid wheat. The first one took place around 0.8 million years ago and gave rise 133 

to tetraploid wild emmer wheat (WEW, T. turgidum ssp. dicoccoides, AABBDD, 2n = 134 

4x = 28); the second one happened about 10,000 years ago and yielded the ancestral 135 

hexaploid wheat, which subsequently diverged into different cultivated forms, with 136 

common wheat becoming the most widely cultivated food crop and accounting for 137 

over 90% of the global wheat production today (Shewry and Hey, 2015; Levy and 138 

Feldman, 2022). As uncovered by recent genomic analysis, hexaploid wheat has 139 

dispersed origin and protracted speciation and domestication history, with frequent 140 

interploidy introgressions playing a prominent role in shaping its polyploid genome 141 

(Zhou et al., 2020; Wang et al., 2022a; Zhao et al., 2023b). Owing to intensive 142 

selection, modern breeding has decreased the genetic diversity of common wheat, but 143 

introduced a number of alien chromatins from wheat relatives, which enhance wheat 144 

yield potential particularly in the environments with high biotic and/or abiotic stresses 145 

(Walkowiak et al., 2020; Przewieslik-Allen et al., 2021). Thus, the composition and 146 

function of modern common wheat genomes are highly dynamic and plastic, which 147 

enables them to adapt to contrasting environments and to produce the grains with 148 

different end-use requirements. Clearly, only one reference genome sequence based 149 

on the landrace cultivar Chinese Spring (CS) is not sufficient to cover the global 150 

diversities of common wheat (IWGSC et al., 2018); pangenomic resources, as well as 151 

the genome databases generated from using regionally important elite cultivars, are 152 

needed to aid genomics-assisted breeding in common wheat (Walkowiak et al., 2020). 153 

Consequently, the genomes of several elite common wheat varieties from American, 154 

Asian, and European countries have been sequenced and analyzed recently (Sato et al., 155 

2021; Shimizu et al., 2021; Akpinar et al., 2022; Athiyannan et al., 2022; Aury et al., 156 

2022; Kale et al., 2022; Shi et al., 2022). 157 

With a yearly planting area over 24 million hectares and an annual production 158 

exceeding 130 million tons, China is the world's largest wheat producer and consumer 159 

(Xiao et al., 2022). Among the ten wheat cultivation zones of China, the Yellow and 160 

Huai River Valley (YHRV) winter wheat region is most important, as it contributes 161 
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over 70% to the total national annual wheat production (He et al., 2014). Aikang 58 162 

(AK58), a leading elite winter wheat cultivar in the YHRV region since its release in 163 

2005, exhibits strong resistance to lodging and elevated tolerance to multiple abiotic 164 

stresses (e.g., drought and frost) (Wang et al., 2018; Jia et al., 2021). It carries the 165 

beneficial 1RS translocation and favorable genes in vernalization (i.e., vrn-A1, vrn-B1, 166 

vrn-B3, vrn-D1), plant height (e.g., Rht1), photoperiod control (e.g., Ppd-D1a), and 167 

end-use quality (e.g., Glu-D1d) traits (http://wheatpedigree.net/sort/show/111306). 168 

Furthermore, AK58 has been used as a key parental germplasm for developing more 169 

than 100 commercial common wheat cultivars in China (Wang et al., 2018; Jia et al., 170 

2021). Therefore, AK58 is a typical product of intensive selection breeding and a 171 

valuable genetic resource for further wheat improvement. Studying the genomic and 172 

molecular basis underlying AK58’s outstanding performance may shed new light on 173 

the changes conferred by modern breeding as well as generate novel resources for 174 

future wheat improvement in the genomics era. Thus, we developed a comprehensive 175 

genome database for AK58 and initiated a series of genetic and breeding studies using 176 

AK58’s genome database. 177 

Previously, we reported the 3D genome characteristics, the distribution and 178 

evolutionary significance of Helitron transposons, and the centromere structures in 179 

AK58 (Jia et al., 2021; Wang et al., 2022b). The main objectives of this work were to 180 

outline in detail the major components of AK58’s genome database and its application 181 

in revealing the genomic changes involved in modern wheat improvement. 182 

Furthermore, we explored subgenome diploidization and divergence and designed a 183 

homoeologous locus-based GWAS (HGWAS) to identify the polyploid loci 184 

functioning in agronomic trait control. In this approach, the three subgenomic 185 

homoeologs of a homoeologous locus were each tagged by a closely linked SNP 186 

marker, which facilitated the distinguishment of both parental and progeny HHs. 187 

Subsequently, these HHs were used as genotyping data for GWAS computation. It is 188 

worth noting that this approach could also be employed for HGWAS analysis using 189 

natural varietal populations after the HHs of homoeologous loci were identified using 190 
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commercial SNP arrays. We found that HGWAS was more effective for uncovering 191 

the loci controlling important crop traits than the conventional single 192 

homoeolog-based GWAS in common wheat, and unraveled 123 homeologous loci 193 

highly significantly associated with the examined agronomic traits using the genetic 194 

population derived from AK58 and CS, a model landrace with a well sequenced 195 

genome (IWGSC et al., 2018). Remarkably, many of the HHs mined in this work 196 

could largely improve wheat yield and related traits, thus having the potential to 197 

accelerate wheat improvement through genomics-assisted breeding. 198 

 199 

RESULTS 200 

Chromosome-scale assembly of AK58 genome 201 

By using the sequence data generated from Illumina sequencing, PacBio single 202 

molecule real time sequencing, 10 Genomics linked reads, and Hi-C analysis, 203 

pseudomolecule sequences representing the 21 chromosomes of AK58 genome were 204 

assembled (see Methods). The assembly consisted of 279,861 contigs (N50, 237.2 kb) 205 

and 159,139 scaffolds (N50, 28.3 Mb) (Table 1). After integrating Hi-C data, the 206 

scaffold N50 was increased to 715 Mb (Supplemental Table 1). The total scaffold 207 

length of AK58 assembly (14.75 Gb) spanned 95.2% of the 15.5 Gb estimated 208 

genome size of common wheat (IWGSC et al., 2018), with the top 584 scaffolds 209 

covering 90% of the assembly (Table 1). Through combining Hi-C information and a 210 

high-density genetic map, nearly 97% of the assembled sequences were anchored to 211 

and ordered on the 21 pseudochromosomes (Supplemental Table 2).  212 

Attesting to the high quality of the AK58 assembly, 99.97% of the Illumina paired end 213 

reads generated in this study could be mapped to the assembly, and the nucleotide 214 

accuracy rate of the assembly was 99.9995% based on a homozygous SNP rate of 215 

0.0004968% (Supplemental Table 3). The LTR Assembly Index (LAI) scores of the 216 

three subgenomes were all above 10, and the coverage of 15 previously reported BAC 217 
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sequences by AK58 assembly reached 99% - 100% (Supplemental Figures 1A and 1B, 218 

Supplemental Table 4). CEGMA and BUSCO analysis revealed that 97.2% of the 219 

highly conserved eukaryotic coding exons were present in the AK58 assembly 220 

(Supplemental Tables 5 and 6).  221 

CENH3 is a functional marker of centromeres in eukaryotes (McKinley and 222 

Cheeseman, 2016). Through mapping CENH3 ChIP-Seq reads, we determined the 223 

centromere location for all 21 chromosomes (Figure 1, Supplemental Table 7). The 224 

average centromere size was 7.0 Mb ranging from 3.0 (7B) to 9.6 Mb (2B) across the 225 

21 chromosomes, with the mean centromere size being 7.5, 7.0 and, 6.7 Mb for A, B, 226 

and D subgenomes, respectively. Compared with CS, we observed an increase in 227 

centromere size in AK58 chromosomes (Zhao et al., 2023a). Altogether, the above 228 

data indicate that AK58 genome is among the well assembled Triticeae genomes 229 

reported recently (Supplemental Table 8). 230 

While constructing the 3D map of AK58 genome using 797.6 million pairs of 231 

high-confidence Hi-C reads, we noted strong signals along the diagonal of the 232 

interaction map, indicative of abundant interactions involving nearby chromosomal 233 

regions (Supplemental Figure 1C). Importantly, we revealed that there existed 234 

subgenome specific and dominant homologous TEs, which enabled chromosomes of 235 

the same subgenome interacted more strongly with each other and thus formed 236 

subgenome-specific territories. The 1RS chromosomal arm, introgressed from rye and 237 

differing from its wheat counterpart in TE composition, exhibited much less 238 

interactions with wheat chromosomes (Jia et al., 2021). 239 

Detailed annotation of genes and TEs in AK58 genome  240 

We annotated 119,448 high-confidence protein coding genes (PCGs) for AK58 241 

genome, with more PCGs in subgenome D (40,665) relative to subgenomes B (38,538) 242 

and A (38,115) (Supplemental Table 2). Of the 119,448 PCGs, 117,318 (98.2%) were 243 

ordered on the 21 chromosomes (Supplemental Table 9). Consistent with other studies 244 

(Athiyannan et al., 2022; Aury et al., 2022), gene density was relatively high towards 245 
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the distal regions of the chromosomes where recombination rate was high and TE 246 

content was low, with comparatively low gene density found in the pericentromeric 247 

region (Figure 1). 248 

Of the 119,448 PCGs annotated in AK58 genome, 63,843 (53.4%) were present as 249 

triad homoeologous group (A:B:D configuration of 1:1:1), 21,232 (17.8%) had at 250 

least one homoeolog duplicated in one subgenome (A:B:D configuration of 1:1:N, 251 

1:N:1, N:1:1, or other ratio), and 10,192 (8.5%) genes were dyad (loss of homoeolog 252 

in one subgenome, resulting in the A:B:D configuration of 1:1:0, 1:0:1, or 0:1:1). The 253 

remaining 22,051 (18.5%) genes occurred as singletons (A:B:D configuration of 1:0:0, 254 

0:1:0, or 0:0:1). Lineage-specific gene duplications and pseudogene formation have 255 

profoundly shaped the divergence of homoeologous chromosomal loci carrying gluten 256 

genes, which collectively determine the end-use quality of wheat grains (Wang et al., 257 

2020). Due to their high complexities, gluten gene loci are usually poorly assembled 258 

in previously published wheat genomes (IWGSC et al., 2018; Walkowiak et al., 2020). 259 

To aid future wheat evolutionary and grain quality improvement studies, we analyzed 260 

the gluten gene loci of AK58 in detail (Supplemental Figure 2, Supplemental Table 261 

10). Two paralogous genes encoding high-molecular-weight glutenin subunits were 262 

detected in homoeologous Glu-A1, -B1, and -D1 loci, respectively. In the composite 263 

locus Gli-A1/Glu-A3, we found 18 duplicated genes encoding -gliadins, -gliadins, 264 

or low-molecular-weight glutenin subunits (LMW-GSs); on the other hand, 24 265 

duplicated genes coding for -gliadins, -gliadins, -gliadins, or LMW-GSs were 266 

detected in homoeologous Gli-D1/Glu-D3 locus. The Gli-B1/Glu-B3 locus was absent 267 

in AK58 due to replacement of 1BS by 1RS. Thus, we annotated the Sec-1 and Sec-4 268 

loci of the 1RS in AK58; the former carried 21 duplicated genes encoding 269 

40K-γ-secalins whereas the latter had 11 duplicated genes for -secalins. As to 270 

homoeologous Gli-A2, -B2, and -D2 loci on group 6 chromosomes, they carried 35, 271 

18, or 10 duplicated genes specifying -gliadins. Except for Glu-B1 and -D1, 272 

pseudogenization was commonly observed in the other gluten gene loci 273 

(Supplemental Table 10). 274 
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In AK58, TEs accounted for 85.3% of the genome, of which, retrotransposons and 275 

DNA transposons covered 67.09% and 16.56% of the genome, respectively 276 

(Supplemental Table 11). Globally, TE content was similar across subgenomes A 277 

(85.6%), B (84.6%), and D (82.9%) (Supplemental Figure 3A). TEs were densely 278 

distributed in the middle regions of chromosomes where the gene density and 279 

recombination rate were low (Figure 1). The accumulative length of TEs in three 280 

subgenomes was different for retrotransposons (B > A > D) and DNA transposons (B > 281 

D > A). We found that CACTA elements expanded in Poaceae species relative to 282 

other subfamilies of Graminaceae, and accounted for 15.4% of the whole genome and 283 

18.9% of the D subgenome (the highest in the three subgenomes) in AK58, similar to 284 

that reported in CS (IWGSC et al., 2018).  285 

Epi-modifications and open chromatins 286 

We investigated whole-genome DNA methylation in single-base resolution in AK58, 287 

and found that 116,626 PCGs with methylation in their promoter or gene body regions 288 

under normal growth conditions, accounting for 97.6% of the total 119,448 PCGs. 289 

Methylation occurred mainly in CG and CHG sites and their levels were positively 290 

correlated with TE abundance in promoter regions (Supplemental Figure 3B). In 291 

contrast, CHH methylation did not have a clear relationship with TE density, but was 292 

preferentially associated with, and likely directed, by the 24-nt small RNAs 293 

(Supplemental Figure 3C). We examined histone modification and chromatin 294 

accessibility by capturing 19 key histone marks and MNase-digestion accessibility of 295 

AK58 genome, providing rich information on histone modifications in common wheat. 296 

Overall, approximately 5% of the genome had histone modifications, which occurred 297 

in 85,663 (71.7%) of the 119,448 PCGs. Furthermore, chromatin was open in 298 

approximately 1.2% of the genome, involving 102,963 (86.2%) of the total 119,448 299 

genes. Our epigenomics data will complement those published previously (Yuan et al., 300 

2020, 2022; Liu et al., 2021; Wang et al., 2021), thus enabling more systematic 301 

studies of the roles of epigenetic regulations on wheat trait formation and 302 

improvement. 303 
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Transcription factors and transcriptional landscape  304 

We annotated 6,355 putative TF genes for AK58 genome, which belonged to 66 305 

families and accounted for 5.32% of the 119,448 PCGs. Notably, the number of 306 

TFs in AK58 was evidently more than that in other grass genomes, even polyploid 307 

feature was considered (Supplemental Table 12). The number of annotated TF genes 308 

in A, B and D subgenome was 2,054, 2241, and 2,060, respectively, with the TF 309 

genes in A and D subgenome being more numerous than those annotated for T. 310 

urartu (1,760) or Ae. tauschii (1,892). The top five TF gene families were NAC 311 

(549), AP2/ERF (492), C2H2 (491), bHLH (478), and MYB (418), respectively.  312 

To explore the global gene expression patterns of hexaploid wheat, we performed 313 

RNA sequencing using the AK58 samples collected from diverse organs, 314 

developmental stages, and abiotic stress conditions (Supplemental Table 13). The 315 

transcripts for 82,704 genes (69.2% of 119,448 PCGs) were detected and their 316 

expression variations among tissues and stress conditions were observed 317 

(Supplemental Figure 4). Generally, no obvious subgenome dominance in gene 318 

expression was observed. Nevertheless, 10.54% (12,584) of the expressed genes 319 

exhibited context-specific expression patterns. We constructed a network based on 320 

weighted gene co-expression network analysis and defined 84 co-expression modules 321 

(Figure 2A, Supplemental Figure 5), of which 74 may potentially affect wheat growth 322 

and/or stress tolerance as they contain one or more rice gene homologs known to 323 

function in such processes. A closer inspection revealed that genes from the A, B and 324 

D subgenomes were almost equally distributed in each co-expression module 325 

(Supplemental Table 14), suggesting that the expression of subgenome orthologs was 326 

convergent. 327 

There were probably two major factors to make the expression of subgenome 328 

orthologs convergent. One is the TFs that regulated the orthologs in a similar manner 329 

across the subgenomes (Figure 2B). Of the 6,355 annotated TF genes, 4,890 were 330 

expressed and distributed in the 84 co-expression modules (Supplemental Table 14). 331 

The TF genes in each module were co-expressed with the target genes from all three 332 
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subgenomes. Co-regulation of TFs and their targets in the three subgenomes plays a 333 

key role in yielding the whole genome co-expression network. Another factor might 334 

be the genome-wide epigenetic modification that is closely related to gene expression. 335 

Although the ancestral diploid progenitors of hexaploid wheat were diverged more 336 

than 5 MYA (Marcussen et al., 2014), and the D genome in Ae. tauschii and hexaploid 337 

wheat for only about 10,000 years (Huang et al., 2002), the epigenetic modifications 338 

(mainly histone modifications) were more similar among the three subgenomes of 339 

wheat than between the D genome of Ae. tauschii and the subgenome D of wheat 340 

(Figure 2C), which could contribute to the diploid-like gene expression in hexaploid 341 

wheat. 342 

On the other hand, we observed that 41.6% of the AK58 triads expressed in this work 343 

displayed expression variations, indicating subfunctionalization of homoeologs 344 

according to previous studies (Blanc and Wolfe, 2004; Roulin et al., 2013). This 345 

points to the possibility that a specific homoeolog may be preferentially expressed in 346 

certain tissues or conditions to assist better perception of developmental cues and/or 347 

more efficient environmental adaptation. A notable example was the “Green 348 

Revolution” gene Rht1. Among its three homoeologs, Rht-D1 in AK58 encodes a 349 

mutant protein, thus leading to constitutive suppression of GA signaling and a 350 

desirable dwarf phenotype as reported previously (Peng et al., 1999). Compared with 351 

Rht-A1 and Rht-B1, Rht-D1 was highly expressed in stems (Supplemental Figure 6A), 352 

and displayed an obviously higher co-expression pattern with the genes regulating 353 

internode architecture, such as the orthologs of OSH1, OSH15, and OsSD1 354 

(Supplemental Figure 6B). Another example was the domestication gene Q that 355 

encodes an AP2-like TF (Zhang et al., 2011). For the three Q homoeologs of AK58, 356 

Q-5A encodes a protein with the V329I mutation, consistent with that reported 357 

previously. Q-5A was predominantly expressed in developing spikes (Supplemental 358 

Figures 6C and 6D), consistent with its function in promoting square spike and higher 359 

spikelet density in modern common wheat (Zhang et al., 2011). 360 

SNPs, genetic map, QTLs, functional genes, and mutant library 361 
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AK58 reference genome provides a platform for generating and integrating together 362 

the SNPs, genetic map, QTLs, and functional genes that are key components for 363 

genomics-assisted breeding. We annotated SNP markers in the widely used 55K and 364 

660K chips using AK58 genome information, and mapped 33,124 polymorphic SNP 365 

markers onto the AK58/CS F2 genetic map (Supplemental Figure 7). To add value to 366 

this map, we anchored a total of 950 QTLs and 1,227 functionally studied genes 367 

published previously to this map; the 1,692 candidate genes under improvement 368 

selection revealed by this work, including the 139 HGWAS loci described below, 369 

were also integrated (Supplemental Table 15).  370 

We generated 3,031 ethyl methyl sulfone (EMS) mutant M3 lines for AK58 371 

(Supplemental Figures 8A-8C) and designed an exome capture chip based on the 372 

annotated genes of AK58 genome. The exons and introns, as well as the up- and 373 

down-stream regions, of genes were captured for 714 EMS lines. A total of 7,193,425 374 

mutations (including 6,033,155 SNPs and 1,160,270 Indels) were precisely identified 375 

for 159,184 genes. The EMS-induced SNPs caused 1,342,083 missense, 60,894 376 

stop-gained, and 3,106 start codon-lost mutations in gene coding regions, and a large 377 

number of mutations were also found in the untranslated and promoter regions 378 

(Supplemental Figure 8D). On average, 6,080 single base mutations were found per 379 

line, with eight missense and truncation alleles per gene in this mutant library. The 380 

mutation efficiency of AK58 EMS library was similar to those reported previously 381 

(Krasileva et al., 2017). 382 

Finally, we built a comprehensive AK58 genome database (available in 383 

https://triticeae.henau.edu.cn/aikang58/), and a JBrowse module was developed to 384 

view the SNPs, QTLs and multiple epi-modifications. Users may search for 385 

nucleotide and deduced protein sequences of their interested genes, and find a wide 386 

range of information concerning transcript levels combined with expression modules 387 

and co-expression genes, as well as the SNPs, QTLs, and EMS mutations. 388 

Comparisons between AK58 and CS reveal genomic changes in modern 389 
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wheat improvement 390 

CS is a well-known landrace in the world, with its genome well assembled and 391 

analyzed (IWGSC et al., 2018). The availability of genome sequence of AK58, a 392 

modern elite variety extensively cultivated in China, provided us a valuable 393 

opportunity for comparing landrace and improved wheat cultivars at a genome-wide 394 

level to investigate the genomic changes brought about by modern wheat breeding 395 

selection. 396 

The plant architectures were significantly different between AK58 and CS (Figure 397 

3A). AK58 displayed reduced plant height (PH), flag leaf length (FLL) and angle 398 

(FLA), heading time (HT), spikelet number per spike (SLN), floret number per spike 399 

(FLN), and grain number per spike (GN), but exhibited significant increases in flag 400 

leaf width (FLW) and thickness (FLT), awn length (AL), and chlorophyll content (Chl) 401 

as well as thousand grain weight (TGW) and harvest index (HI) (Supplemental Table 402 

16). Moreover, the grain quality related traits of AK58, e.g., grain protein and wet 403 

gluten contents (GPC and WGC), were also superior over those of CS (Supplemental 404 

Table 16). Clearly, the agronomic characteristics of AK58 are typical of those of post 405 

green revolution modern elite cultivars, whereas the traits of CS are representative of 406 

those of landrace varieties (Hao et al., 2020; Li et al., 2022). 407 

When the pseudochromosomes of AK58 were aligned to those of CS, approximately 408 

86% of the AK58 genome was collinear with 88% of CS genome (Supplemental Table 409 

17). The largest non-syntenic region concerned the short arm of Chr1B because of the 410 

1RS translocation in AK58 (Figure 3B, Supplemental Figure 9). More than 10% 411 

genomic difference existed between AK58 and CS, and the B subgenome appeared to 412 

be more variable, with PAV genes (genes in present or absent variation) occurred 413 

more frequently in the B subgenome than in the A and D subgenomes (Supplemental 414 

Table 18).  415 

In total, 40,607,820 SNPs and 5,491,679 Indels existed between AK58 and CS, with 416 

variations occurring more frequently in the distal regions than in the peri-centromeric 417 

areas of chromosomes (Figure 3C, Supplemental Figure 10). Of these variations, 418 
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169,376 SNPs (0.4%) and 12,774 Indels (0.2%) were located in the exons of 36,454 419 

genes, with 83,618 SNPs and 8,259 Indels causing frame-shifting mutations 420 

(Supplemental Table 19). Subgenomes B and D had the highest and lowest 421 

polymorphisms between the two cultivars based on SNPs and Indels. The SNP 422 

frequency between AK58 and CS was 2.8 SNP/kb. Structural variations (SVs) are an 423 

important indicator of the evolution and selection that plants have experienced and are 424 

thus critical for phenotypic variations (Yuan et al., 2021). We therefore analyzed 425 

genotype specific SVs by mutually aligning AK58 and CS genomes. The cumulative 426 

lengths of AK58 specific SVs (present in AK58 and absent in CS) and CS private SVs 427 

(present in CS and absent in AK58) were 183.3 and 107.8 Mb, respectively, which 428 

accounted for 1.3% and 0.8% of AK58 and CS genome, respectively. Within the SVs, 429 

5,857 and 3,080 genes were specifically owned by AK58 and CS, respectively 430 

(Supplemental Table 20), accounting for 4.8% and 2.9% of the annotated AK58 and 431 

CS PCGs, respectively. 432 

The majority of the SV genes, 75% for AK58 and 66% for CS, were singleton or 433 

multiple-copy genes (Supplemental Table 20). GO term enrichment analysis showed 434 

both AK58 and CS specific SV genes were enriched in kinase activity and cellular 435 

protein modification processes, but more AK58 SV genes were involved in 436 

photosystem I and response to wounding. KEGG analysis indicated that AK58 437 

specific SV genes were significantly enriched in oxidative phosphorylation pathway, 438 

while CS specific SV genes were mainly involved in plant-pathogen interaction 439 

(Supplemental Figure 11).  440 

Based on the transcriptomic data generated using seven organ samples, the expression 441 

levels of 8,808 gene pairs were statistically different (q < 0.05) between AK58 and 442 

CS, and there were more up-regulated genes than down-regulated genes in AK58 443 

relative to CS (Figure 3D, Supplemental Figure 12). These differentially expressed 444 

genes were enriched mainly in metabolic process and catalytic activity (Supplemental 445 

Figure 13). 446 
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Detection of agronomically important homoeologous loci by HGWAS 447 

Following the above analysis, we developed a homoeologous locus-based GWAS 448 

(HGWAS) approach to investigate the homoeologous loci controlling 20 important 449 

agronomic traits using AK58/CS F2 population with the phenotypic data collected 450 

from two to eight environments. Unlike conventional QTL and GWAS studies that 451 

considered the different homoeologs of a homoeologous locus independently during 452 

genotyping and association test, HGWAS aimed at establishing marker-trait 453 

associations for homoeologous loci, with the different haplotypes of a homoeologous 454 

locus defined by combining the SNP markers nearest to each homoeolog (Figure 4A). 455 

Using HGWAS, we detected a total of 393 loci significantly associated with leaf, 456 

spike, grain, and plant architecture related traits (Supplemental Table 21), of which 457 

139 were detected in two or more environments (Supplemental Table 22) with 458 

significantly different genetic effects for different traits (Figure 4B). Among the 139 459 

HGWAS loci, 123 (88.5%) explained more than 10% of the phenotypic variation each, 460 

and were thus regarded as major trait-controlling loci (Supplemental Table 22). The 461 

123 loci were associated with yield components (71), plant architecture (42), heading 462 

and maturity times (4), and photosynthesis (6) (Supplemental Table 22). These 463 

prominent HGWAS loci distributed on all seven homoeologous groups with some 464 

obvious clusters (Supplemental Table 23). 465 

We also performed a conventional GWAS analysis using the same population and 466 

same sets of phenotypic data but considered the homoeologs independently using 467 

their nearest SNP markers, with the GWAS loci detected compared to those 468 

uncovered by HGWAS. A total of 460 loci were detected by the two methods 469 

(Supplemental Table 21), including 67 (14.6%) by conventional GWAS only, 219 470 

(47.6%) by HGWAS only, and 174 (37.8%) by both. HGWAS and GWAS analysis 471 

detected 85% and 53% of the 460 loci, respectively. Clearly, more than 40% of the 472 

loci could not be detected by conventional GWAS analysis (Supplemental Figure 14). 473 

For the 174 loci detected by both methods, the percentages of phenotypical variation 474 

explained by HGWAS loci were generally higher than those by their corresponding 475 
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GWAS loci (Supplemental Table 24), such as heading date (Figure 4C). These data 476 

suggest that HGWAS is more powerful than conventional GWAS in discovering 477 

agronomically important loci in common wheat. 478 

To validate the high effectiveness of HGWAS, we compared the genetic effects on 479 

plot yield of the elite haplotypes of Vrn3 revealed by conventional GWAS and 480 

HGWAS. In common wheat, Vrn3 (also named as TaFT-1), located on group seven 481 

chromosomes, exerts pleotropic effects on many important traits including heading 482 

date and yield related traits (Yan et al., 2006; Chen et al., 2022). In our single 483 

homoeolog-based GWAS analysis of 267 common wheat accessions genotyped using 484 

the 660K SNP array, only one of the three homoeologs, i.e., Vrn3-D1, was detected to 485 

significantly associate with plot yield, with its elite haplotype (Vrn3-7D-hap1) 486 

increasing the plot yield by 13.0% relative to the population mean (Table 2). As 487 

anticipated, Vrn3 was found to associate with plot yield in our HGWAS analysis. 488 

Among the nine different HHs identified for Vrn3 in this varietal population, 489 

Vrn3-HH1’s yield enhancement effect was similar to that of Vrn3-7D-hap1, but 490 

importantly we found that two elite HHs, i.e., Vrn3-HH6 and Vrn3-HH7, could both 491 

increase the yield by above 30% compared with the population mean (Table 2). These 492 

results validate the superiority of HGWAS over single homoeolog-based GWAS in 493 

uncovering more elite genetic variants that have much larger genetic effects on 494 

agronomic traits, which can contribute directly to the genetic diversities and trait 495 

improvement of common wheat. 496 

Identification and analysis of the elite HHs that contributed to modern 497 

wheat improvement 498 

For each canonical HGWAS locus with three homoeologs, there were eight 499 

homozygous and 19 heterozygous HHs, respectively, in the F2 population. To analyze 500 

the composition of elite HHs for the 123 major HGWAS loci, we designated the 501 

parental haplotypes of AK58 and CS as AAA and CCC, respectively, with AAA and 502 

CCC indicating the three subgenomic homoeologs of an associated locus all from 503 

AK58 or CS. To identify elite HHs, we compared the genetic effects of parental and 504 
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progeny haplotypes on specific traits. As a control, we used middle parent value 505 

(MPV) of the concerned trait, which was the mean of the trait data collected for AK58 506 

and CS from multiple environments. 507 

To illustrate how this analysis was accomplished, we examined the genetic effects of 508 

different HHs in the grain weight associated locus TGW_G4_16.1_20.0 located in the 509 

Rht1 cluster on PH and TGW (Supplemental Table 25, marked in red). The mean PH 510 

of the F2 plants with the CHA haplotype of TGW_G4_16.1_20.0, which carried the 511 

CS homoeolog in homozygous state in subgenome A, the AK58 homoeolog in 512 

homozygous state in subgenome D, but was heterozygous in subgenome B, was 513 

similarly reduced as that of the F2 individuals with the AAA haplotype (with the three 514 

homoeologs of AK58 all in homozygous state). However, CHA increased TGW by 515 

6.5% compared to the parental haplotype AAA. Since it is well known that Rht1 (i.e., 516 

having the AAA haplotype as that in AK58) decreases PH but with a negative effect 517 

on TGW (Guan et al., 2018), the CHA haplotype may be useful for mitigating the 518 

negative effect of Rht1 on grain weight while still keeping its PH reduction function 519 

in wheat breeding. 520 

Using the type of analysis outlined above, we found that, in 54 of the 123 major loci, 521 

the AK58 parental AAA haplotypes displayed superior traits compared with the CS 522 

parental CCC haplotypes (Supplemental Tables 25 and 26), suggesting that these 523 

AAA haplotypes are the products of modern wheat improvement breeding. The 54 524 

elite AAA haplotypes carried by AK58 affected plant architecture, yield components, 525 

heading time, and photosynthesis, and explained 11% - 40% of the phenotypic 526 

variations of the concerned traits. Not surprisingly, these AAA haplotypes concurred 527 

with many well characterized important wheat genes (e.g., Rht1, Rht8, Ppd1, and 528 

Vrn1, Supplemental Table 27).  529 

For example, in the PH associated locus PH_G4_15.7_26.2 resided in the Rht1 cluster, 530 

the AAA haplotype (carried by AK58) conferred a 28.8% reduction in PH compared 531 

with the CCC haplotype (possessed by CS); in another PH associated locus 532 

(PH_G2_12.2_35.0) situated in Rht8 genomic region, the genotype with the AAA 533 
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haplotype was about 8 cm shorter relative to that with the CCC haplotype; in the SLN 534 

associated locus SLN_G5_465.8_491.1 located in Vrn1 genomic region, the F2 plants 535 

with the AAA haplotype had substantially more SLN than those with the CCC 536 

haplotype (Supplemental Table 25).  537 

However, the majority of the 54 associated loci possessing elite AAA haplotypes were 538 

located in the genomic regions without prior knowledge on agronomically important 539 

genes. For example, the GL associated locus GL_G2_533.3_563.0, located on the 540 

long arm of group 2 chromosomes (Supplemental Figures 15A and 15B), was 541 

detected in four environments and explained 11% - 20% of the phenotypic variation 542 

of GL (Supplemental Table 21). Notably, GL_G2_533.3_563.0 overlapped with the 543 

grain weight associated locus TGW_G2_543.6_565.8 (Supplemental Table 25), 544 

consistent with the contribution of GL to TGW. For both loci, the elite AAA haplotype 545 

was superior over both the CCC haplotype and MPV as AAA gave rise to 546 

substantially higher GL and TGW values (Supplemental Figure 15C, Supplemental 547 

Table 25). Within this genomic region on Chromosome 2D of AK58, 28 genes 548 

(TraesAK58CH2D473400 - 476100) were annotated, 11 of which were found 549 

expressed in seven tissues with identical patterns between AK58 and CS 550 

(Supplemental Figure 15D). The gene TraesAK58CH2D475100, predicted to encode 551 

an uncharacterized protein with a SMR-domain, showed high transcriptional levels in 552 

the spikes and anthers and the grains at early development stages (Supplemental 553 

Figures 15D-15F). To seek for genetic evidence for the function of 554 

TraesAK58CH2D475100 in GL and TGW control, we made use of the EMS mutant 555 

library of AK58 (see above). Five independent homozygous EMS mutants for 556 

TraesAK58CH2D475100 were identified in the mutant library, and they all produced 557 

significantly smaller grains compared with WT AK58 (Supplemental Figure 16). This 558 

analysis not only reveals TraesAK58CH2D475100 as a valuable candidate gene for 559 

controlling wheat GL and TGW, but also demonstrates the high utility of AK58 560 

genome resources generated by this work. 561 

Potential superior HH haplotypes for further wheat improvement 562 
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Among the 123 major HGWAS loci, 83 carried the HHs superior over the parental 563 

AAA haplotypes (carried by AK58) in their genetic effects on the agronomic traits 564 

examined in this work (Supplemental Table 26). Of the superior HHs in the 83 loci, 565 

22 were carried by the CS parent (i.e., CCC haplotypes), whereas 61 were newly 566 

formed in the F2 progenies by reassortment of CS and AK58 homoeologs. That is, the 567 

61 HHs were called as BPV ones for their conferring superior traits to the better 568 

parent value.  569 

The length, width, and thickness of flag leaves are the architecture traits highly 570 

important for wheat yield (Zhao et al., 2018; Tu et al., 2021). As illustrated by AK58 571 

(Figure 3, Supplemental Table 16), the flag leaves of modern variety were shorter, 572 

wider, and thicker than those of landraces. In the FLL associated locus 573 

FLL_G4_481.0_485.3, the superior haplotype AAC (with the A and B homoeologs 574 

from AK58 and the D homoeolog from CS) shortened FLL by 3.82 cm (18%) and 575 

2.63 cm (14%) compared with the parental haplotypes CCC and AAA, respectively 576 

(Supplemental Table 25). Interestingly, FLL_G4_481.0_485.3 co-located with the GN 577 

associated locus GN_G4_474.8_485.3, and the AAC haplotype increased GN by 5.6 578 

(10%) and 5.9 (11%) in comparison with CCC and AAA, respectively (Supplemental 579 

Table 25). Therefore, it is worthy to further explore the value of the AAC haplotype 580 

of FLL_G4_481.0_485.3 (GN_G4_474.8_485.3) in improving wheat plant 581 

architecture and grain yield. PH_G4_299.3_319.2, located on the long arm of group 4 582 

chromosomes, was a major locus associated with PH, and its ACA haplotype (with the 583 

A and D homoeologs from AK58 and the B homoeolog from CS) shortened PH by 584 

17.6 cm (16.4%) compared with the parental haplotype CCC. More importantly, it had 585 

no negative effect on TGW as Rht1 did (Supplemental Table 25). Therefore, the ACA 586 

haplotype of PH_G4_299.3_319.2 may replace Rht1 in future wheat breeding. 587 

Vrn1 plays a pivotal role in flowering time control in common wheat (Chen and 588 

Dubcovsky, 2012), and allelic variations of Vrn1 have been reported to cause 589 

differences in flowering time (Strejčková et al., 2021). Remarkably, we detected nine 590 

HGWAS loci in the genomic region of Vrn1, which were significantly associated with 591 
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plant architecture, yield components, heading and maturity dates, and photosynthesis 592 

(Table 3, Supplemental Table 25). Among the elite HHs of the nine HGWAS loci 593 

overlapping with Vrn1, the CAA haplotype of GN_G5_476.7_492.6 had five more 594 

grains per spike than the better parent haplotype CCC and seven more grains per spike 595 

than MPV; the AAC haplotype of Ht_G5_473.4_490.5 headed five days earlier than 596 

MPV (Table 3, Supplemental Table 25). 597 

The above data prompted us to further examine Vrn1 HHs using more diversified 598 

common wheat germplasm. We thus determined Vrn1 HHs in 77 landraces and 337 599 

improved varieties, which unveiled a total of 50 Vrn1 HHs (Supplemental Table 28). 600 

The dominant Vrn1 locus haplotypes were HH13 and HH5 in both landraces and 601 

improved varieties, but HH20 and HH35 were also abundant in the examined 602 

landraces. The most favorable was HH33, which reduced PH by 19.0% but increased 603 

TGW by 4.4% and grain yield by 16.0% compared with the dominant haplotype HH5 604 

in three-year field trials. HH16 carried by AK58 also reduced PH by 12.9% and 605 

promoted TGW by 5.4% and grain yield by 4.1% relative to HH5. Thus, HH16 was 606 

not as effective as HH33 in promoting the grain yield of common wheat. Notably, 607 

HH33 was a rare HH of Vrn1, as it was detected in only 3.3% of the varieties 608 

analyzed here (Supplemental Table 28).  609 

Discussion 610 

In this work, we built the genome database of AK58, an elite winter type variety 611 

developed by intensive selection (Wang et al., 2018; Jia et al., 2021). The assembled 612 

genome size of AK58 (14.75 Gb) was comparable to that reported for other varieties, 613 

e.g., 14.77 Gb for Kenong 9204 (Shi et al., 2022) and 14.96 Gb for SY Mattis 614 

(Walkowiak et al., 2020). Although the contig and scaffold parameters of AK58 615 

assembly were lower than those of the common wheat genome assemblies reported 616 

very recently (Athiyannan et al., 2022; Aury et al., 2022; Kale et al., 2022), the 617 

quality of AK58 genome assembly was similar to that of Kenong 9204 released in 618 

2022 (Shi et al., 2022). Importantly, the genome database of AK58 is more 619 
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wide-ranging than that reported for previously sequenced common wheat varieties. 620 

The 3D chromatin architecture of Aikang 58 was already proved to be useful for 621 

revealing homology-mediated inter-chromosomal interactions in hexaploid wheat (Jia 622 

et al., 2021). The data generated in this work further demonstrated the high utility of 623 

AK58 genome resources.  624 

Owing to its hexaploid nature, large genome size, and high percentage of TEs, the 625 

epigenetic studies of common wheat have lagged behind those of model plants 626 

(Arabidopsis and rice) and many crop species (Song et al., 2017; Zhao et al., 2020; 627 

Jiang et al., 2021; Samantara et al., 2021). Nevertheless, common wheat is a unique 628 

and powerful model for studying the important roles of epigenetic regulations in crop 629 

evolution and improvement (Yuan et al., 2020, 2022). The rich and systematic 630 

epigenomics data and the HGWAS loci reported here for AK58, plus the epigenetic 631 

resources generated previously (Yuan et al., 2020, 2022; Liu et al., 2021; Wang et al., 632 

2021), will provide a solid basis and practical clues for fast tracking the research on 633 

the functions of epigenetic regulations on trait formation and enhancement in 634 

common wheat in the future. 635 

Through intensive selection breeding, semi-dwarf modern cultivars, resistant to 636 

lodging but requiring more nitrogen fertilizers to achieve high yield level, become 637 

prevalent in global wheat production (Hedden, 2003; Wu et al., 2020). Recent studies 638 

indicate that synergistic selection of the genes with multiple functions and pleiotropic 639 

effects plays an important part in shaping the performance of modern wheat cultivars 640 

(Hao et al., 2020; Pang et al., 2020; Li et al., 2022), and that introduction of alien 641 

genes from wheat relatives aided the resilience of common wheat under adverse 642 

environmental conditions (Qi et al., 2007; Mirzaghaderi and Mason, 2019; 643 

Walkowiak et al., 2020; Zhang et al., 2023). Nevertheless, the effects of modern 644 

breeding selection are very complex; a complete understanding of the genetic, 645 

molecular, and physiological changes involved is still far away (Shi and Lai, 2015). 646 

Jo
urn

al 
Pre-

pro
of



Comparison of AK58 with CS in this work indicates that cultivar specific SVs may 647 

contribute to AK58’s superior performance over CS. SVs rendered AK58 to possess a 648 

much higher number of private genes (5,758) than CS does (3,080), with many of the 649 

AK58 specific genes involved in photosystem I and oxidative phosphorylation 650 

according to GO or KEGG analysis. Because both processes are involved in 651 

producing ATP through photosynthesis in chloroplasts or respiration in mitochondria, 652 

AK58 may have a higher cellular content of ATP than CS. As ATP is the most 653 

important source of energy in cells, an enhanced supply of ATP may enable AK58 to 654 

grow, and to defend against environmental stresses, more robustly, and thus achieving 655 

higher and more stable yield levels under different growth conditions. Obviously, our 656 

comparative analysis of AK58 and CS genomes provides valuable clues for 657 

systematically dissecting the genetic, molecular and physiological basis of modern 658 

breeding on wheat improvement. 659 

In common wheat, there is so far only one report in the literature that has identified 660 

and compared the genetic effects of different HHs on agronomic traits. In their study, 661 

Dong et al. (2010) compared the genetic effects of eight HHs formed by reassortment 662 

of parental Glu-A3, -B3 and -D3 homoeologs on the gluten quality parameter Zeleny 663 

sedimentation value (ZSV), and identified a superior progeny HH (with Glu-A3 and 664 

-D3 from one parent and Glu-B3 from another parent) using PCR markers, whose 665 

ZSV was 21.96% higher than MPV and 5.97% higher than BPV. This illustrates the 666 

possibility, importance and high potential of obtaining elite HHs for improving 667 

agronomic traits. Herein, we proved that homoeologous locus-based HGWAS is 668 

substantially more effective than single homoeolog-based GWAS in discovering the 669 

chromosome loci and their elite HHs controlling important agronomic traits (Table 2, 670 

Supplemental Figure 14, and Supplemental Tables 21 and 24). Of the 123 major 671 

HGWAS loci detected by us, many acted pleiotropically on two or more important 672 

traits (e.g., PH and TGW, GL and TGW, or FLL and GN). This is in accordance with 673 

the finding that modern wheat breeding has synergistically selected multiple key 674 

genes with pleiotropic effects (Li et al., 2022). Through analyzing the genetic effects 675 
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of the 123 major HGWAS loci using MPV as control, we deduce that the 54 loci, 676 

whose elite HHs were AK58 parental homoeolog sets, are very likely the products of 677 

modern intensive selection breeding. This is consistent with the finding that many of 678 

the 54 loci were located in the genomic regions harboring well known wheat 679 

improvement genes (e.g., Rht1, Rht8, Ppd1, and Vrn1) (Supplemental Table 27). This 680 

proposition is also supported by the identification of TraesAK58CH2D475100 as a 681 

candidate gene for the two overlapping loci associated with GL (GL_G2_533.3_563.0) 682 

and GW (TGW_G2_543.6_565.8), respectively (Supplemental Figures 15 and 16).  683 

In contrast to the 54 loci discussed above, the 83 HGWAS loci, whose elite HHs 684 

conferred higher genetic effects than BPVs, may be valuable for further improvement 685 

of common wheat. In 21 such loci, the elite haplotypes were from CS. This may not 686 

be surprisingly, as landrace cultivars have often been found to carry elite alleles for 687 

better environmental adaptability, more potent defense responses to stresses, or 688 

superior quality parameters in crop genetic studies (Liu et al., 2019; Rufo et al., 2019). 689 

Remarkably, in 62 loci (~75% of the 83 loci), the elite HHs were newly formed by 690 

reassortment of CS and AK58 homoeologs, indicating that the likelihood of obtaining 691 

favorable HHs with high breeding values is quite large. Of particular interest is the 692 

detection of nine HGWAS loci in the genomic region of Vrn1, with many elite HHs 693 

conferring superior agronomic traits (Supplemental Tables 25 and 27). Consistently, 694 

elite Vrn1 HHs were also discovered in wheat landrace and improved cultivars, with 695 

the rare haplotype HH33 reducing PH by 19.0% and simultaneously increasing TGW 696 

by 4.4% and grain yield by 16.0% compared with the dominant haplotype HH5 in 697 

multi-year field trials (Supplemental Table 28). Thus, the elite Vrn1 HHs discovered 698 

in this work, especially HH33, may help to revolutionize wheat yield improvement if 699 

introduced into appropriate genetic background through genomics-assisted breeding 700 

in the future. 701 

Our work showed that HGWAS was more powerful than conventional GWAS 702 

analysis in terms of the number of positive loci identified and the PVE% explained by 703 
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the associated loci. This is understandable as HGWAS treated the three subgenomic 704 

homoeologs as one and thus has a higher probability of detecting the synergistic 705 

function of the three homoeologs. Another observation was that the HGWAS loci 706 

associated with different traits tended to form clusters. This may be caused by the 707 

neofunctionalization of one or more of the three subgenomic homoeologs. With these 708 

considerations, the HGWAS loci may aid further investigations of the conserved and 709 

diverged functions of wheat homoeologs as well as their additive and nonadditive 710 

interactions in agronomic trait control in future research. Finally, since the genetic 711 

effects of a HGWAS locus may reflect the combined function of three subgenomic 712 

homoeologs, the HGWAS approach and the loci revealed using it might also help to 713 

stimulate further and deeper studies of the genetic basis of polyploid heterosis, a 714 

phenomenon often exhibited by polyploids when compared with their progenitors 715 

with lower ploidy levels (Abel et al., 2005; Chen et al., 2010; Bansal et al., 2012). 716 

Previous studies suggest that the genetic diversity of hexaploid wheat is very poor, 717 

and this problem has been regarded as a bottleneck limiting the progress of wheat 718 

improvement (Mirzaghaderi and Mason, 2019; Scott et al., 2021). However, using the 719 

HGWAS approach, we demonstrate that HH variations are very rich in hexaploid 720 

wheat, with the probability of identifying elite HHs being fairly high. Hence, 721 

discovery and application of elite HHs may lead to breakthroughs in wheat breeding 722 

programs in the future. 723 

In summary, our work has generated a valuable genome database for an elite common 724 

wheat variety, which enriches wheat genomic resources and may contribute positively 725 

to worldwide wheat genomics, germplasm enhancement, and breeding studies. The 726 

insights obtained using AK58 genomic data highlight the potential benefits of 727 

HGWAS and the elite HHs mined by HGWAS, whose further testing and efficient 728 

exploitation will likely enhance the genetic diversity and accelerate genomics-assisted 729 

breeding in common wheat and other polyploid crops. 730 
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Methods 731 

Plant materials and growth conditions 732 

AK58 was provided by its breeder Professor Zhengang Ru. CS was the line sequenced 733 

previously (IWGSC et al., 2018). Wheat plants were grown under greenhouse 734 

conditions with day and night temperatures of 25 °C and 20 °C, respectively, and a 735 

photoperiod 16 h light / 8 h dark. The AK58 × CS F2 population was prepared using 736 

AK58 as the female parent. AK58 and CS, as well as their F2 individuals and 737 

derivative F2:3 families, were cultivated in multiple environments for phenotypic data 738 

collection as reported previously (Zhang et al., 2013; Zhao et al., 2018; Tu et al., 2021, 739 

detailed below). The processing quality-related parameters of AK58 and CS were 740 

scored as reported by Zhang et al. (2018). 741 

Genome sequencing 742 

AK58 genomic DNA was used to construct multiple types of libraries, including short 743 

insert size (450 bp) libraries, mate-paired (2 kb, 5 kb, 8 kb, 20 kb and 40 kb) libraries 744 

and PacBio SMRT Cell libraries. For the 450 bp short inserts, PCR free libraries were 745 

constructed according to the manufacturer’s instructions and sequenced on an 746 

Illumina HisSeq2500 instrument with 250 bp per end. The libraries with different 747 

fragment sizes ranging from 2 to 40 kb were constructed and sequenced on the 748 

Illumina X Ten platform. PacBio SMRT Cell libraries were sequenced with a PacBio 749 

RS II instrument. 750 

Genome assembly and evaluation 751 

AK58 genome assembly was accomplished using the software package 752 

DeNovoMAGIC2 (NRGene, Nes Ziona, Israel), which is highly efficient in 753 

assembling the genomes rich in repetitive elements 754 

(https://www.nrgene.com/de-novo-magic/). Sequencing data from PCR-Free library 755 

and the Nextera mate-paired libraries were used for DeNovoMAGIC2 assembly. PCR 756 

duplicates, an Illumina adaptor (AGATCGGAAGAGC), and Nextera linkers (for 757 

mate-paired libraries) were removed from raw sequencing data. Overlapping reads 758 
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from the PE 450 bp 2 × 250 bp libraries were then merged with a minimal required 759 

overlap of 10 bp to create the stitched reads. The first step of the DeNovoMAGIC2 760 

assembly algorithm consisted of building a De Bruijn graph (kmer = 191 bp) of 761 

contigs from the overlapping PE reads. Next, PE reads were used to find reliable paths 762 

in the graph between contigs for repeat resolving and contig extension. Later, contigs 763 

were linked into scaffolds with PE and MP information, estimating gaps between the 764 

contigs according to the distance of PE and MP links. The final fill gap step used PE 765 

and MP links, as well as De Bruijn graph information, to detect a unique path 766 

connecting the gap edges. Mate-paired data (20 kb, 40 kb) were mapped to the basic 767 

assembly using bowtie (http://bowtie-bio.sourceforge.net/index.shtml), and only 768 

unique mapping reads were used for further scaffolding, which was performed by 769 

SSPACE (https://www.baseclear.com/ genomics/bioinformatics/basetools/SSPACE, 770 

V3.0). PBJelly (http://www.winsite.com/ Home-Education/Science/PBJelly/) was 771 

used to fill gaps using approximately 10× of PacBio SMRT sequencing data. The 772 

high-density genetic map of AK58 × CS was used to anchor the scaffolds to 773 

chromosomes using BLAST program. The completeness of gene regions of the 774 

assembly was evaluated using both CEGMA (Core Eukaryotic Gene Mapping 775 

Approach, http://korflab.ucdavis.edu/datasets/cegma/) and BUSCO (Benchmarking 776 

Universal Single-Copy Orthologs, http://busco.ezlab.org/). LAI scores were computed 777 

for A, B and D subgenomes, respectively, to assess the quality of the assembly of 778 

intergenic regions (Ou et al., 2018). To examine the accuracy of AK58 assembly, the 779 

raw Illumina reads were aligned to AK58 genome using BWA software. Then 780 

alignments were sorted using SAMtools, and the variants were called using GATK 781 

HaplotypeCaller module. The SNPs were filtered by use of VCFtools. Homozygous 782 

SNPs were used to calculate nucleotide base accuracy rate of the assembly. 783 

Protein-coding gene prediction 784 

Protein-coding region identification and gene prediction were conducted using a 785 

combination of homology-based prediction, de novo prediction, and 786 

transcriptome-based prediction methods. Protein sequences from eight grass genomes 787 
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(Brachypodium distachyon, Sorghum bicolor, Oryza sativa, Zea mays, Hordeum 788 

vulgare, T. urartu, Setaria italic, Panicum virgatum) were downloaded from 789 

Ensemble (release-33). Protein sequences of three additional Triticeae species were 790 

downloaded from the websites 791 

https://www.ncbi.nlm.nih.gov/nuccore/AOCO02000000 (for Ae. tauschii), 792 

http://wewseq.wixsite.com/consortium/wild-emmer-wheat (for T. turgidum ssp. 793 

diccocoides), or https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_ 794 

Annotations/v1.0/ (for CS, IWGSCv1.0). The protein sequences from the above 795 

eleven genomes were aligned to AK58 genome assembly using TblastN with an 796 

E-value cutoff of 1e-5. The BLAST hits were conjoined using Solar software. 797 

GeneWise was used to predict the exact gene structure of the corresponding genomic 798 

regions for each BLAST hit. Homology predictions were split into two sets, which 799 

included a high-confidence homology set (HCH-set, with significant identities to the 800 

genes annotated in CS) and a low confidence homology set (LCH-set, all except for 801 

the HCH-set). A collection of wheat full-length cDNAs (16,807 in total) were directly 802 

mapped to the AK58 genome and assembled by PASA. Gene models created by PASA 803 

were denoted as the PASA-FLC-set (PASA full length cDNA set), this gene set was 804 

used to train the ab initio gene prediction programs. Five ab initio gene prediction 805 

programs, i.e., Augustus (version 2.5.5), Genscan (version 1.0), GlimmerHMM 806 

(version 3.0.1), Geneid, and SNAP, were used to predict coding regions in the 807 

repeat-masked genome. RNA-seq data were mapped to the assembly using ToHILSt 808 

(version 2.0.8). Cufflinks (version 2.1.1) was then used to assemble the 809 

transcripts into gene models (Cufflinks-set). In addition, 56.51 Gb of RNA-seq data 810 

from seven different organs (leaf, root, node, internode, sheath, young spike, and 811 

developing grain) were assembled by Trinity, creating several sets of expressed 812 

sequence tags (ESTs). These ESTs were also mapped to the AK58 assembly and gene 813 

models were predicted using PASA. This gene set was denoted as PASA-T-set (PASA 814 

Trinity set). Gene model evidence from the HCH-set, LCH-set, PASA-FLC-set, 815 

Cufflinks-set, PASA-T-set and ab initio programs were combined by 816 

EvidenceModeler (EVM) into a non-redundant set of gene structures. Weights for 817 
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each type of evidence were set as follows: HCH-set > PASA-FLC-set > PASA-T-set > 818 

Cufflinks-set > LCH-set > Augustus > GeneID = SNAP = GlimmerHMM = Genscan. 819 

Gene model output by EVM with low confidence scores was firstly filtered by two 820 

criteria: (1) coding region lengths of 150 bp and (2) supported only by ab initio 821 

methods and with FPKM < 1. Using a similar approach as described in the genome 822 

sequencing of Gossypium raimondii (Wang et al., 2012), we further filtered gene 823 

models based on Cscore and peptide coverage, followed by overlapping CDS with 824 

TEs. Only the transcripts with a Cscore ≥ 0.5 and peptide coverage ≥ 0.5 were 825 

retained. For the gene models with more than 20% of their CDS overlapping with TEs, 826 

we required that their Cscore values must be  0.8 and that peptide coverage must be 827 

 80%. Finally, we also filtered out those models for which more than 30% of the 828 

peptides were annotated as Pfam or Interprot TE domains. Finally, 119,448 829 

high-confidence PCGs were annotated. 830 

Transcriptome sequencing and analysis 831 

To facilitate gene annotation and investigation of biological questions using gene 832 

expression information, 42 transcriptomic datasets were generated for AK58 by 833 

performing Illumina RNA sequencing of the leaf samples collected from normal or 834 

diverse abiotic conditions, the stem, root, and spike samples of normally-grown plants, 835 

and the developing grain samples harvested at 4, 10, 15, 20 d after anthesis 836 

(Supplemental Table 13). RNA-seq data were mapped to the genome assembly using 837 

ToHILSt (version 2.0.8). Only the aligned reads located within 600 bp of each other 838 

were defined as concordantly mapped pairs, which were used in the downstream 839 

quantification analysis. The minimum and maximum intron length was set to 5 bp and 840 

50,000 bp, respectively. All other parameters were set to the default values. The 841 

software cufflinks30 (version 2.1.1) (http:// cufflinks.cbcb.umd.edu/) was used to 842 

estimate the expression level for each gene based on the reads uniquely mapped to the 843 

genome assembly. An expressed gene was defined if its RPKM value was  1. Those 844 

with an RPKM value < 1 were considered as non-expressed genes. The expressed 845 

PCGs were used to build co-expression network using the WGCNA R package 846 
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following the study by Yang et al. (2021). Co-expression network was visualized with 847 

Cytoscape (Version 3.5.1).  848 

TF analysis  849 

The iTAK program was used to annotate the TF genes of AK58 based on homology 850 

search against the known plant TF database integrated in the program, with the search 851 

results classified into different TF families. Comparison of AK58 TF genes with those 852 

of other grass species were carried out as reported by Zheng et al. (2016). 853 

TE annotation 854 

The complement of AK58 TEs was annotated through homology-based prediction 855 

method. A TE library containing 3,050 complete TE sequences (ClariTeRep) was 856 

downloaded (https://github.com/jdaron/CLARI-TE). This library was constructed 857 

from two curated Triticeae TE libraries: TREP and an additional set of Tes manually 858 

annotated in a pilot study of chromosome 3B. This combined library was searched 859 

against the AK58 genome using RepeatMasker (https://www.repeatmasker.org/).  860 

Genomic comparison between AK58 and CS 861 

Each pseudochromosome of AK58 genome was aligned to the corresponding 862 

chromosome of CS using the software MuMmer (Kurtz et al., 2004). Approximately 863 

12.339 Gb (86.01% of the 14.346 Gb) from AK58 genome could be aligned to 12.311 864 

Gb (87.53% of the 14.066 Gb) of the CS genome, with the average identity of the 865 

aligned regions reaching 99.66%.  866 

Detection of HGWAS loci 867 

A total of 1,045 F2 progenies, derived by crossing AK58 with CS, were evaluated in 868 

two field environments during 2018 - 2019, i.e., Xinxiang, Henan province 869 

(E113°48′28″, N35°09′34″, 374 F2 plants phenotyped) and Beijing (E116°20′04″, 870 

N39°58′02″, 222 F2 plants phenotyped), and in two greenhouse experiments in 871 

Beijing (one in 2018 involving 238 F2 plants and another in 2019 with 211 F2 plants). 872 

In addition, 717 F2:3 lines were also phenotyped in three field environments during 873 

2019 - 2020, including 200 lines sown on October 15 and 259 lines sown on 874 

December 1, 2019 in Xinxiang, Henan Province, as well as 258 lines sown in 2019 in 875 
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Changping, Beijing (E116°14′49″, N40°10′48″). A total of 29 traits were recorded as 876 

list in Supplemental Table 21. Field management was performed according to the 877 

common practices for wheat production. HT was recorded as the days from sowing to 878 

heading. At heading stage, FLL, FLW, FLT, LA and Chl were measured using 10 879 

randomly selected flag leaves (Zhao et al., 2018; Tu et al., 2021). At physiological 880 

maturity, PH and yield related traits were scored as described by Zhang et al. (2013).  881 

The 1,045 F2 plants and 717 F2:3 lines were genotyped using the 55K SNP array by 882 

China Golden Marker (Beijing, China) (Zhai et al., 2021), with a total of 53,063 SNPs 883 

identified. Quality control of markers was performed to exclude those with high 884 

missing rate (> 50%) and low MAF (< 5%). Using the resultant high-quality SNPs 885 

and based on the genome annotation information of AK58 and CS, we identified 886 

17,783 triad gene sets whose homoeologs were polymorphic between AK58 and CS 887 

based on the SNP nearest to each homoeolog. These polymorphic homoeologous loci 888 

were then used in HGWAS and conventional GWAS analyses using the phenotypic 889 

data from each environment. In HGWAS, different genotypes were distinguished to 890 

the level of homoeologous loci, whereas in GWAS each homoeolog was genotyped 891 

independently. Genotype-phenotype association was tested using the mixed linear 892 

model, with population structure and kinship coefficients calculated by the 893 

TASSEL3.0 software (Yu et al., 2006). Only the associations with a -log10 (p-value) ≥ 894 

3.0 were selected for further uses. To identify elite haplotypes, the genetic effects of 895 

different HHs of the concerned HGWAS locus were compared to MPV or BPV, with 896 

statistical analyses accomplished using either Student t-test or LSD multiple 897 

comparison test installed in SPSS for windows 13.0.  898 

Investigation of Vrn1 and Vrn3 HHs in wheat varietal populations 899 

For investigating Vrn1 HHs, a total of 414 accessions (including 77 landraces and 337 900 

improved varieties), which had been phenotypically assessed in multiple 901 

environments by Gao et al. (2017), were genotyped using the 660K SNP array as 902 

described previously (Sun et al., 2020). The resulting SNP data were used to 903 

distinguish different HHs of Vrn1 as described above. The genetic effects of different 904 
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HHs on agronomic traits were then computed using the phenotypic data collected 905 

previously (Gao et al., 2017). The Vrn3 HHs and their genetic effects on agronomic 906 

traits were investigated similarly, except that the number of varietal accessions used 907 

was 267, which were part of the 414 accessions described above. 908 
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Figure legends 1223 

Figure 1. Main features of AK58 genome assembly.  1224 

An outline of AK58 genomic features. Track a, the 21 chromosomes. One scale label 1225 

indicates 10 Mb. The black histogram indicates the distribution of two types of 1226 

LTR-RTs (Quinta and Cereba), with the peaks indicating candidate centromeric 1227 
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regions. Track b, Distribution of the 105 known miRNAs (represented by yellow dots) 1228 

on different chromosomes. Track c, lncRNA density, presented by lncRNA length/5 1229 

Mb. Track d, gene density, measured by genes/5 Mb. Track e, gene expression, 1230 

calculated as the average RPKM value per 5 Mb. Track f, SNP density of AK58 (as 1231 

compared to CS). Tracks g-j, density of total TE (g), Gypsy (h), Copia (i), and DNA 1232 

(j) TEs, all calculated as total length of TEs per 5 Mb.  1233 
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Figure 2. Analysis of the co-expression networks and modules of AK58.  1235 

(A) The 84 co-expression modules constructed based on the transcriptomic data 1236 

obtained in this study for root, young leaf, flag leaf, stem, young spike or grain tissues. 1237 

Heatmap of the expression pattern of a representative gene (eigengene) in the given 1238 

module was defined by WGCNA. An eigengene summarizes the expression profiles 1239 

of a group of co-expressed genes. Rows and columns indicate samples and modules, 1240 

respectively. White boxes on the left indicate tissue types. 1241 

(B) The dynamics of TF gene expression patterns in four co-expression networks 1242 

constructed using the transcriptomic data of leaf, root, grain, or young spike tissues. 1243 

Node coloring is according to the clustering of co-expression modules. Putative 1244 

functions for some of the genes in the network are annotated based on their orthologs 1245 

characterized in rice. Gene expression networks and their modules were mainly tissue 1246 

dependent instead of subgenome dependent. 1247 

(C) Comparisons of chromatin states between AK58 subgenomes and the D genome 1248 

of Ae. tauschii. Chromatin states were obtained for AK58 subgenomes and Ae. 1249 

tauschii genome, respectively, using a 15-state ChromHMM model based on 18 1250 

histone marks. Darker blue color in the heatmaps indicates a higher probability or 1251 

enrichment of epi-marks. Rows of the heatmap correspond to the determined states, 1252 

and columns correspond to different histone marks with two replicates. The states are 1253 

reordered by their similarity among the four genomes.  1254 

 1255 

Figure 3. Comparison of main agronmic and genomic charateristics between 1256 

AK58 and CS.  1257 

(A) Plant architectures of AK58 and CS. The two cultivars differ clearly in plant 1258 

height, spike, grain, leaf, and tiller angles. For each trait, AK58 is shown on the left 1259 

and CS on the right.  1260 

(B) Synteny between the B subgenomes of AK58 and CS, with colinear regions 1261 

connected by vertical lines.  1262 

(C) The distribution of indels along chromosome 2B (Chr2B) of AK58. Indel density 1263 

is calculated in 5 Mb windows along the chromosome. The light orange bar indicates 1264 

the centromeric region.  1265 
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(D) Volcano plots of differentially expressed genes in AK58 compared with CS in 1266 

four samples. Grain-DAF4, developing grains collected at 4 days after anthesis; FM, 1267 

floret meristems at about 1cm inflorescence stage; leaf and root at seedling stage. 1268 

 1269 

Figure 4. Detection of agronomically important homoeologous loci by HGWAS. 1270 

(A) A diagram illustrating the difference between GWAS and HGWAS approaches in 1271 

common wheat. During genotyping, GWAS considers homoeologs independently for 1272 

detecting the homoeologs associated with different agronomic traits, whereas 1273 

HGWAS treats the three homoeologs as one genetic unit for detecting the 1274 

homoeologous loci linked to specific traits. For example, the red circles in the left 1275 

panel indicates trait-associating homoeologs revealed by GWAS, while in the right 1276 

panel the trait-associating homoeologous loci uncovered by HGWAS are boxed in red. 1277 

(B) The distribution of 139 major HGWAS loci along the seven groups of 1278 

homoeologous chromosomes (G1 - G7) detected in this study using AK58/CS F2 1279 

population. The approximate physical position (Mb) is privided on the left. Twenty 1280 

traits were examined, including AL (awn length), Chl (chlorophyll content), FLL (flag 1281 

leaf length), FLN (floret number per spike), FLT (flag leaf thickness), FLW (flag leaf 1282 

width), GL (grain length), GN (grain number per spike), GW (grain width), HT 1283 

(heading time), LA (leaf angle), MT (mature time), PH (plant height), Pm (powdery 1284 

mildew resistance), SD (spikelet density), SL (spike length), SLN (spikelet number 1285 

per spike), SN (spike number per plant), SS (seed setting), TGW (1000-grain weight), 1286 

as listed in Supplemental Table 22. 1287 

(C) An example showing the superior efficiency of HGWAS over GWAS in detecting 1288 

trait-associating chromosomal loci. The loci significantly associated with heading 1289 

time were both identified by GWAS (up) and HGWAS (bottom) on group 2 and 5 1290 

chromosomes, with higher R2 values by HGWAS. Additionally, one locus on group 1 1291 

chromosomes was detected by HGWAS but not GWAS, which explained 16% of the 1292 

heading time variation. 1293 
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Table 1. Summary of AK58 genome assembly 1295 

Parameter 
Length (bp) Number 

Contig Scaffold Contig Scaffold 

Total 14,659,748,929 14,752,721,585 279,861 159,139 

Maximum 2,084,420 115,914,924 - - 

N50 237,187 28,282,379 18,423 153 

N60 189,861 21,419,151 25,335 213 

N70 147,027 16,464,209 34,106 290 

N80 105,449 10,989,250 45,816 400 

N90 59,822 5,727,441 63,842 584 
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Table 2. Comparison of genetic effects on plot yield for the haplotypes of Vrn3 revealed by conventional GWAS or HGWAS 1297 

GWAS HGWAS 

Associated 

homoeolog 

Homoeolog 

haplotype 

Plot yield (kg, 

mean  SD) 

Effect of elite 

haplotype 

Associated 

locus 

Homoeologous haplotype Plot yield (kg, 

mean  SD) 

Effect of elite 

haplotype 

Vrn3-7D 

Vrn3-7D-hap1 2.6 ± 0.7 (153) * 13.0% 

Vrn3 

HH1, Vrn3-7A-hap1_7B-hap1_7D-hap1 2.7 ± 0.6 (70) ab 17.4% 

Vrn3-7D-hap2 1.8 ± 0.8 (114)   HH2, Vrn3-7A-hap2_7B-hap1_7D-hap1 2.5 ± 0.7 (55) abc  

   HH3, Vrn3-7A-hap1_7B-hap1_7D-hap2 2.1 ± 0.7 (38) bc  

   HH4, Vrn3-7A-hap2_7B-hap1_7D-hap2 2.0 ± 0.7 (38) bc  

   HH5, Vrn3-7A-hap3_7B-hap1_7D-hap2 1.2 ± 0.4 (34) d  

   HH6, Vrn3-7A-hap2_7B-hap2_7D-hap1 3.0 ± 0.7 (13) a 30.4% 

   HH7, Vrn3-7A-hap1_7B-hap2_7D-hap1 3.1 ± 0.6 (10) a 34.8% 

   HH8, Vrn3-7A-hap1_7B-hap2_7D-hap2 1.8 ± 0.6 (4) c  

   HH9, Vrn3-7A-hap3_7B-hap1_7D-hap1 1.9 ± 0.5 (5) c  

The varietal population was phenotypically assessed by Gao et al. (2017). The mean plot (4.5 m2 each) yield for the varietal population was 2.3 ± 0.8 kg. The number in the brackets indicates 1298 

the lines having the given genotype. Statistical analysis was conducted using Student t test (for GWAS) or the LSD method with significant differences marked by different small letters after the 1299 

means. In both cases, significant differences were based on P < 0.05.  1300 
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Table 3. The HGWAS loci detected in the Vrn1 region and their elite HH haplotypes 
 

HGWAS locus Trait concerned 
AK58 trait value 

(HH: AAA) 

CS trait value 

(HH: CCC) 

Middle parent 

value (MPV) 
Elite HH 

Trait value of 

elite HH 

Chl_G5_465.2_485.8 Chlorophyll content (Chl, SPAD) 50.6 ± 2.8a 51.5 ± 2.9b 51.5 ± 3.4b CAC 53.1 ± 3.4c 

FLL_G5_474.7_486.2 Flag leaf length (FLL, cm) 19.3 ± 4.7b 19.3 ± 3.1b 18. 6± 4a AAC 17.3 ± 3.6a 

FLT_G5_478.7_486.2 Flag leaf thickness (FLT, mm) 0.217 ± 0.026a 0.214 ± 0.017a 0.221 ± 0.023a AHC 0.234 ± 0.023b 

FLN_G5_465.5_492.6 Floret number per spike (FLN) 86.7 ± 15.7a 98.3 ± 14.1c 93.7 ± 17.3b CAA 102 ± 17.7c 

GN_G5_476.7_492.6 Grain number per spike (GN) 52.0 ± 17.7a 61.2 ± 14.5b 59.1 ± 18.6a CAA 65.9 ± 19.9b 

HT_G5_473.4_490.5 Heading time (HT, day) 191.9 ± 7.6c 184.1 ± 3.9a 188.4 ± 9.1b AAC 182.9 ± 10.3a 

PH_G5_480.1_489.9 Plant height (PH, cm) 100.8 ± 18.5c 98.6 ± 12.4b 97.4 ± 15.1b AAC 88.7 ± 11.4a 

SL_G5_473.7_489.9 Spike length (SL, cm) 8.4 ± 1.5a 8.0 ± 1.0a 8.7 ± 1.6b CHA 9.4 ± 1.6c 

SLN_G5_465.8_491.1 Spikelet number per spike (SLN) 22.4 ± 2.1b 22.1 ± 2.2a 22.4 ± 2.6b HCA 24.2 ± 2.6c 

Trait values are Means ± SD. Multiple statistical comparisons were conducted using the LSD method, with different small letters indicating significant differences (P  0.05). 
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