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A B S T R A C T   

A reliable method to estimate the leaf area index (LAI) in a field environment is crucial for precise monitoring of 
crop-growth status. Currently, the crop canopy information has been widely used to estimate LAI using remote 
sensing methods. Many studies regard canopy tassels and leaves as integrated objects, no systematic study has yet 
investigated how tassels affect the accuracy of LAI estimates. Moreover, the estimation accuracy and general-
ization ability of the number of selected vegetation indices was seldom evaluated. Therefore, this study used deep 
learning segmentation methods to quantify how maize tassels affect LAI estimates and to evaluate how the 
number of variables affects LAI estimates. The results showed that the multispectral dataset segmentation tassels 
had the highest accuracy when using the VGG-encoded U-Net model (class pixel accuracy, CPA = 89.53 %; mean 
intersection over union, MIoU = 85.97 %). The segmentation accuracy first was increased and then decreased 
with tassel growth. By quantifying the contribution of tassels to the vegetation index, tassels most strongly affect 
the modified nonlinear vegetation index (MNLI) constructed from the canopy spectral information. Moreover, 
removing the tassels in images could significantly improve the accuracy of LAI estimates using the gradient- 
boosting decision tree method (GBDT). The estimation method obtained the highest accuracy when using nine 
vegetation indices to estimate the LAI (R2 

= 0.816, RMSE = 0.399, rRMSE = 7.4 %). Overall, the proposed 
method improves the accuracy of LAI estimates, which provides crucial technical support for monitoring the LAI 
of maize.   

1. Introduction 

Maize (Zea mays), a very important source of food and feed, is one of 
the most widely distributed food crops in the world (Andrimont et al., 
2020). It is of strategic importance at the national level and has a high 
economic impact on agricultural producers. Accurately monitoring 
maize growth provides information that is essential for food security and 
for the economic security of farmers. 

The leaf area index (LAI) is the ratio of the one-sided surface area of 

all green leaves to the surface area per unit of land (Breda, 2003; Liu 
et al., 2021). The LAI is a key parameter reflecting the crop-growth 
status, which gives information on the vegetation canopy structure 
and related material and energy-exchange processes (Morel et al., 2014; 
Putzenlechner et al., 2019). For instance, the information about LAI may 
be used to estimate dry matter content and crop yield (Dimitrov et al., 
2019). Unfortunately, the LAI is traditionally measured in the field using 
hand-held testers, which is an accurate but labor-intensive method that 
is not operationally feasible for large-area field measurements (Lv et al., 
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2021). Therefore, a method for rapid, large-scale acquisition and anal-
ysis of the LAI is highly desirable. 

The vegetation indices (VIs), a spectral transformation of two or 
more spectral bands, provides quantitative information on vegetation 
growth information on the ground monitored by remote sensing, which 
effectively and non-destructively describes green plant growth and 
biomass information (Jin et al., 2020a; Liang et al., 2015; Nguy- 
Robertson et al., 2014). The empirical model for estimating the LAI 
based on vegetation indices obtained from remotely sensed data was 
simple and thus widely studied. The study of Tanaka et al. (2015) has 
shown a strong linear relationship between LAI and the spectral index 
(SI) based on the difference between vegetation reflectance values at 
760 nm and 739 nm. Kimma et al. (2020) used the Green Wide Dynamic 
Range Vegetation Index (GrWDRVI) obtained from STAIR fusion data 
and CubeSat data to build 2nd-order polynomial function model that 
accurately estimated the LAI of Corn [R2 = 0.75, root mean square error 
(RMSE) = 1.10 (m2 m− 2)]. However, previous studies indicated that, for 
high-density vegetation, the saturation of optical remote-sensing imag-
ery degraded the performance of these models for estimating biophysi-
cal parameters such as the leaf-area index (LAI), the FAPAR, and above- 
ground biomass(Cao et al., 2017; Haboudane et al., 2004; Liang et al., 
2015; Nguy-Robertson et al., 2014). To enhanced the sensitivity to LAI 
estimation, Liang et al. (2015) build hybrid inversion models for LAI 
estimation and the optimized soil-adjusted vegetation index (OSVAI) 
and modified triangular vegetation index (MTVI2) estimated LAI with 
better accuracy (R2 = 0.928, RMSE = 0.485). Nonetheless previous 
studies have estimated the LAI without considering the background (e. 
g., weeds, soil). For maize, the tassels are a non-photosynthetic vege-
tative component, and Bai et al. (2019) found that, reflectance in the 
visible bands increases on the canopy scale after removal tassels. Current 
studies calculated VIs by considering the tassels and the leaves as single 
integrated objects, but how the tassels affect the VI is not discussed. In 
addition, a single VI does not adequately reflect all crop-growth infor-
mation, most studies have used more VIs to estimate LAI. Hence, it is 
crucial in estimation of LAI to reduce the interference of background 
factors and to select the appropriate number of VIs. 

The current studies on tassels mostly involve destructive sampling 
(Dimitrov et al., 2019; Tan et al., 2013), and deep learning methods have 
been widely used as nondestructive methods for detection tassels. For 
example, Lu et al. (2016) proposed a region generation proposal based 
on graph partitioning algorithms and simple linear iterative clustering 
(SLIC), which combined an ensemble neural network to segment tassels 
with an average precision of 74.30 %. Mirnezami et al. (2021) combined 
deep learning and image-processing methods to extract tassel-flowering 
patterns from time-lapse camera images of plants grown under field 
conditions. Lu et al. (2021) used the TasselnetV3 model to count tassels 
in a public dataset and obtained rRMSE = 8.50 %. These studies showed 
that lightweight cameras and deep learning methods could be faster and 
more accurate in monitoring tassels. 

Monitoring tassels raises several challenges, such as the small size of 
tassels on the image, the large number of tassels, and the complex back-
ground. When acquiring images of tassels, the weather conditions (e.g., 
cloud cover, temperature, moisture, and wind speed) affect the image 
quality, which makes it difficult to use RGB images to monitor tassels. 
However, the accuracy of crop monitoring may be improved by 
combining multiple features (Ji et al., 2020; Kumar et al., 2021). 
Compared with RGB images, multispectral Images are composites of im-
ages using more spectral bands. More spectral bands can provide spec-
trally informative insights, which would be very important for many 
applications, such as remote sensing, agriculture, environmental moni-
toring, etc (Zeng et al., 2020; Jin et al., 2022). The absorption and 
reflection properties of light were unique for different materials (Tucker, 
1979). The common spectral information including spectral sensitive 
bands and vegetation indices. Red-edge band is used to identify and 
distinguish vegetation types (Tucker, 1979; Zeng et al., 2020), and 
vegetation indices with multi-band combinations are often used to 

represent the growth status of plants (environmental stress, disease 
determination, etc.) (Zeng et al., 2020; Cheng et al., 2021; Jin et al., 2022; 
Zeng et al., 2022; Tian et al., 2023). Therefore, Multispectral images have 
more spectral information than RGB images. Deep learning has powerful 
learning ability to effectively and automatically extract deep features, 
which has provided a new solution to extract hidden features from mul-
tispectral data. Hence, it is essential to investigate the application of deep 
learning segmentation methods to multispectral images of tassels, which 
should provide new insights on monitoring crop-growth status. 

To summarize, developing a fast, large-scale, nondestructive method 
to quantify how tassels affect VIs is important for estimating the LAI. To 
fill gap in this knowledge, we use deep learning methods based on 
multispectral imagery to quantify how tassels affect LAI estimates. The 
objectives of this study are to (1) explore the feasibility of different 
coding structures of deep learning models for segmenting tassels on 
multispectral dataset; (2) quantify the contribution of tassels to VIs on 
multispectral dataset at the canopy scale; and (3) evaluate the difference 
between the original image and images removed tassels in estimating 
LAI and quantify the optimized number of VIs for estimating the LAI. 
This work provides a more accurate approach for monitoring the LAI of 
maize in field conditions, which has broad implications for improving 
crop management and ensuring food security. 

2. Materials and methods 

2.1. Site description 

All experimentation was done at the Xinxiang Comprehensive 
Experimental Base, Xinxiang (113◦47′E, 35◦10′ N), Henan Province, 
China, which has a temperate continental climate with four distinct 
seasons. The annual average temperature is 14.1 ◦C and the average 
annual precipitation is 548.3 mm, mostly concentrated in July and 
August. Summer maize is one of the main crop varieties in the region. In 
this experiment, maize was sown on eight dates in 2020. [April 20 
(No.1), April 30 (No.2), May 13 (No.3), May 23 (No.4), June 2 (No.5), 
June 14 (No.6), June 24 (No.7), and July 4 (No.8)]. Each plot was 
planted with three cultivars [Fengken 139 (FK139), Jingnongke 728 
(JNK728), and Zhengdan 958 (ZD958)], and each cultivar covered 64 
m2 (22.5 m × 7.2 m) with a row spacing of 0.6 m and a planting density 
of 75 000 plants/hm2. The study area location and planting diagram are 
shown in Fig. 1. Local field-management procedures were followed. 

2.2. Data acquisition 

In situ LAI data were acquired by using a SunScan canopy analysis 
system (Delta-T Devices Limited, U.K.), which consists of three compo-
nents: a SunScan probe, a beam-fraction sensor, and a palmtop computer 
[Fig. 2(a)]. The parameters and measurement methods of SunScan have 
been detailed by Ogunbadewa et al. (2012). To eliminate experimental 
uncertainty, measurements were made from 10:00 to 14:00 on July 24, 
August 1, August 10, August 17, August 28, and September 2, 2020. The 
reported LAI was the average of four measurements made at the same 
positions of 0◦, 45◦, 90◦, and 135◦for each plot [Fig. 2(b)]. Represen-
tative plants of three cultivars were selected at random for measuring 
the LAI for the same sowing date, producing a total of 101 data. 

The “fishing rod” phenotype remote-sensing platform [Fig. 3(a)] was 
equipped with a multispectral camera (RedEdge⋅MX) for image acqui-
sition. The RedEdge⋅MX camera measured 8.7 cm × 5.9 cm × 4.54 cm 
and had a field of view of 47.2◦. The multispectral images contained five 
bands: blue (475 ± 10 nm), green (560 ± 10 nm), red (668 ± 10 nm), 
Near Infrared (840 ± 20 nm), and red edge (717 ± 5 nm). For data 
acquisition, the multispectral camera was positioned 1.5 m above the 
top of the canopy, and two images were obtained: a normal-growth 
maize canopy [Fig. 3(d)], and the same image after manually 
removing the tassels [Fig. 3(e)]. The 202 images were pre-processed by 
cropping, alignment, and radiation calibration. 
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2.3. Image-segmentation method 

In this work, images are classified into three categories based on the 
tassel growth stage: early stage of tassel growth (T1), middle stage of 
tassel growth (T2), and late stage of tassel growth (T3). Labelme software 
was used to label the tassels, which were divided into two classes: tassels 
and background. To adequately explore the tassel features in multi-
spectral imagery, multispectral dataset was established in this paper 
inspired by the study of Kumar et al. (2021). The multispectral dataset 
fused the blue, green, red, red edge, and near-infrared bands. 

The U-Net model was proposed by Ronneberger et al. (2015) and 
consists of an encoder and decoder presenting a U-shaped structure. The 
U-Net model improves the segmentation accuracy by using a skip 
connection to fuse multiple features in the up-sampling process. U-Net 

models have been widely used for feature-extraction networks such as 
VGG16, MobileNetV2, ResNet50, InceptionV3, and Xception, etc. 
MobileNetV2 is a lightweight network proposed by Sandler et al. (2018), 
which is featured by the introduction of a reverse residual structure and 
a small number of parameters. ResNet solved the problem whereby 
excessive layers make the gradient disappear during training and make 
the network parameters drop rapidly (He et al., 2016). The present study 
compares the performance of the three coding structures VGG16, 
ResNet, and MobileNet for segmenting tassels. The image is cropped to 
256 * 256 pixels to preserve image resolution. Based on the study of 
Garcia-Garcia et al. (2017), we selected the class pixel accuracy (CPA) 
and mean intersection over union (MIoU) as indicators of 
image-segmentation accuracy. The code was executed on a Windows 
64-bit operating system, and training was done with a Keras 2.15 deep 
learning framework, which is an open-source framework from Google. 
We used an Intel Xeon(R) Gold 6132 CPU @ 2.60 GHz, a NVIDIA Quadro 
P5000 GPU, and 64 GB RAM. 

2.4. Vegetation indices 

Vegetation indices (VIs) are regarded as the feature combination of 
spectral information. The reflectance in multiple bands is mathemati-
cally transformed to enhance vegetation information and minimize non- 
vegetation signals (Bolton and Friedl, 2013; Metternicht, 2003; 
Marcial-Pablo et al., 2019). Table 1 lists the VIs calculated from multi-
spectral imagery. 

The results of image segmentation were divided into four categories: 
images of normal growing tassels (N), images acquired after removing 
tassels by hand (H), the estimation image after removing tassels (E), and 
images of tassels (T). The result of best U-Net model was used to mask 

Fig. 1. Location and design of study area.  

Fig. 2. The Acquisition Process of LAI.  
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Fig. 3. Examples of image-acquisition procedure.  

Table 1 
Summary of vegetation indices calculated from multispectral images.  

Vegetation index Formula Author 

Triangular vegetation index (TVI) TVI = 60× (BandNIR − BandG) − 100× (BandR − BandG) Broge and Leblanc (2001) 
Optimized soil-adjusted vegetation index (OSAVI) 

OSAVI =
(BandNIR − BandR) × 1.16
BandNIR + BandR + 0.16 Rondeaux et al. (1996) 

MERIS Terrestrial Chlorophyll Index (MTCI) 
MTCI =

BandNIR − BandRed - edge

Band Red - edge − BandR 
Dash and Curran (2004) 

Plant Pigment ratio (PPR） 
PPR =

(BandG − BandB)

(BandG + BandB)
Metternicht (2003) 

Structure-insensitive pigment index (SIPI) 
SIPI =

(BandNIR − BandB)

(BandNIR − BandR)
Pen Uelas et al. (1995) 

Red-edge chlorophyll index (CIRed-edge) CIRed - edge =
BandNIR

Band Red - edge

- 1 Gitelson et al. (2005) 

Red edge NDVI (NDVI_R) 
NDVIRed - edge =

BandNIR − Band Red - edge

BandNIR + Band Red - edge 

Gitelson and Merzlyak 
(1994) 

Modified triangular vegetation index (MTVI2) 
MTVI2 =

1.5 × [1.2 × (BandNIR − BandG) − 2.5 × (BandR − BandG)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 × BandNIR + 1)2
− (6 × BandNIR − 5 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
BandR

√
) − 0.5

√ Haboudane et al. (2004) 

Green normalized difference vegetation index (GNDVI) GNDVI =
BandNIR − BandG

BandNIR + BandG 
Gitelson and Merzlyak 
(1998) 

Modified simple ratio (MSR) 
MSR =

BandNIR/BandR − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
BandNIR/BandR

√
+ 1 

Xie et al. (2018) 

Transformed chlorophyll absorption reflectance index 
(TCARI) 

TCARI = 3×
[
(BandRed - edge − BandR) − 0.2 × (BandRed - edge - Bandg) × (

BandRed - edge

BandR
)

] Zarco-Tejada et al. (2002) 

Enhanced vegetation index (EVI) EVI = 2.5×
BandNIR − BandR

BandNIR + 6 × BandR − 7.5 × BandB + 1 Huete et al. (2002) 

Modified chlorophyll absorption ratio index (MCARI) 
MCARI = (BandRed - edge − BandR − 0.2× (BandRed - edge − BandG))× (

BandRed - edge

BandR
) Daughtry et al. (2000) 

Soil-adjusted vegetation index (SAVI) SAVI =
BandNIR − BandR

BandNIR + BandR + 0.5
× 1.5 Huete (1988) 

Modified Soil-adjusted vegetation index (MSAVI) 
MSAVI =

1.5 × (BandNIR − BandRed)

(BandNIR + BandRed + 0.5) Qi et al. (1994) 

Modified non-linear vegetation index (MNLI) 
MNVI =

1.5 × (Band2
NIR − BandR)

Band2
NIR + BandR + 0.5 

Gong et al. (2003) 

Difference vegetation index (DVI) DVI = BANDNIR − BANDR Jordan (1969) 
Normalized difference vegetation index (NDVI) NDVI =

BandNIR − BandR

BandNIR + BandR 
Rouse et al. (1973) 

Ratio vegetation index (RVI1) RVI2 =
BandNIR

BandR 
Daughtry et al. (2000) 

Ratio vegetation index (RVI2) RVI2 =
BandNIR

BandG  
Xue et al. (2004) 

Note: BandR, BandG, BandB, BandNIR, BandRed-edge respectively denote the red band, green band, blue band, near-red band, and red-edge band. 
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the N images, and then obtain the E and T images (Fig. 4). VIs extracted 
from four image categories were used to explain how tassels affect 
canopy spectral information. 

2.5. Quantifying the contribution of tassels 

The contribution was quantified in the multispectral data based on 
the area of the tassels according to study by Shao et al. (2022). Due to 
the different image sizes obtained after clipping, standardization and 
normalization were needed to calculate the spectral contribution of 
tassels, which was calculated as follows: 

CT =
VT × ST

VT × ST + VL × SL
, (1) 

where VT is the VI calculated based on the T images, ST is the fraction 
of area in the images with tassels, VL is the VI calculated from the leaves 
in the images, and SL is the fraction area in the images with leaves. The 
contribution of the tassels to the canopy is mainly classified as positive 
and negative. For example, the vegetation index calculated from the 
tassel image is less than 0, the vegetation index calculated from the 
canopy images is greater than 0. In this case, the contribution of the 
tassels to the canopy is less than 0, the contribution of the tassels to the 
canopy is negative. 

2.6. Method of estimate LAI 

Five machine learning methods were selected to estimate the LAI 
[see details in Xu et al. (2021a), Liu et al. (2021) and Yang et al. (2021)]. 
These methods are implemented in the Python SKlearn package. We 
used partial least squares regression (PLSR), which is a regression 
method for treating multiple variables dependent on multiple indepen-
dent variables (Kamboj et al., 2021). We also used support vector 
regression (SVR) to improve the generalizability of the proposed model 
by mapping the data to a high-dimensional feature space through a 
nonlinear mapping and finding the optimal hyperplane (Xu et al., 
2021a). The radial basis kernel function was set as the SVR kernel 
function, and the penalty factor C was set to 1. We used the random 
forest (RF) algorithm based on a decision tree as the base classifier, with 
the mean value of each decision tree serving as the final result (Xu et al., 
2021a). In this study, the decision tree was set to 100. We used a 
gradient-boosting decision tree (GBDT), which boosts iterations, and the 
residuals of the previous round of base learners were fit by the negative 
gradient of the loss function to gradually decrease the residual estimates 
of each round and thereby accelerate the convergence to the local or 
global optimal solution (Yang et al., 2021). The GBDT was set to 100 
decision trees with the mean squared error serving as loss function, and 
the learning rate was set to 0.1. 

A deep neural network (DNN) is a multilayer perceptron containing 
several hidden layers with excellent nonlinear processing capability and 
can abstract valuable high-level feature information from low-level 
features (Jin et al., 2020b; Liu et al., 2021; Xu et al., 2021a). Given its 
efficient processing capability, the DNN network was used as regression 
model. Fig. 5 shows the structure of the DNN network. 

The DNN network structure consists of an input layer, a hidden layer, 
and an output layer. There are 20 neurons in the input layer and one 
neuron in the output layer. There are six layers in the hidden layer, and 
the neurons in each layer number on the order of 128, 64, 32, 16, 8, and 
4. The activation function is 

tanh(x) =
ex − e− x

ex + e− x, (2) 

and the mean squared error serves as the loss function. In Eq. (2), 
tanh applies to the case of output symmetry and takes values in the range 
[− 1, 1], with zero being the mean value. 

Twenty VIs were selected for estimating the LAI using different 
machine learning methods. 80 % of the dataset (80 samples) was 
selected for model building, and 20 % of the dataset (21 samples) was 
used for model validation. The coefficient of determination, R2, RMSE, 
and rRMSE were selected to evaluate the training and validation models. 
R2, the RMSE, and the rRMSE were as calculated as follows: 

R2 =

∑n
i=1(xi − x)2

× (yi − y)2

∑n
i=1(xi − x)2

×
∑n

i=1(yi − y)2, (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − xi)

2

n

√
√
√
√
√

, (4)  

rRMSE =
RMSE

x
, (5) 

where xi and yi are the measured and predicted values, respectively, 
x and y are the mean measured and predicted values, respectively, and n 
is the number of samples. 

3. Results 

3.1. Tassel segmentation 

To assess the accuracy of tassel segmentation from multispectral 
dataset, Table 2 showed the performance of the three encoding struc-
tures of the U-Net model (Resnet, MobileNet and VGG). The U-Net 
coding structure accuracy (MIoU and CPA) in descending order was 
VGG, Resnet, and MobileNet. The highest accuracy was thus VGG (CPA 
varies from 86.82 to 89.01, and MIoU varies from 75.5 to 89.01). 
Ranking in descending order according to MIoU segmentation accuracy 
given T2, T1, T3. The area of the tassels was larger in the middle of 
tassels growth, and the features of the tassels were more obvious (Fig. 6). 
In the late stages tassel growth leaves gradually turned yellow, which 
was similar to the tassels color. Hence, the U-Net model had some lim-
itations in identifying tassels, resulting in the formation of noise on the 
pictures in the late stages tassel growth (Fig. 6). The VGG-encoded U-Net 
model was more robust for tassel segmentation during T2 (MIoU =
89.53 %, PA = 85.97 %, Fig. 6). 

Fig. 4. Four categories of tassel images.  
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3.2. Contribution of tassels 

The four image categories (N, H, E, and T) were used to investigate 
how tassels affect VIs for three maize cultivars and over three growth 
stages (Fig. 7). The VIs tends to decrease with the maize growth. 
Ranking in descending order of cultivars according to VI gives ZD958, 
JNK728, and FK139. The VIs of T images were lower than those obtained 
from N and E images. The difference in VIs calculated from N and T 

images ranged from 1.83 % to 127.31 %, and the difference was largest 
for the MNLI, which indicated that tassels can influence the canopy 
spectral information. The difference in VIs between image E and image 
H varied from 0.11 % to 43.32 %, which indicated that the proposed 
algorithm significantly mitigated the effect of tassels on VIs. 

Tassels of different cultivars have different structural and spectral 
information at different growth stages, which impacts the canopy 
spectral information. Therefore, the contribution of tassels to different 
VIs was quantified according to Eq. (1), and the results were shown in 
Fig. 8. The contribution of VIs (except for TVI, OSAVI, DVI, PPR, TCARI, 
MNLI, and MCARI) for FK139 was increased and then decreased with 
maize growth and was higher at the end of tassel growth than at the 
beginning of tassel growth. The contribution of VIs (SIPI, NDVI, MSR, 
OSAVI, DVI, EVI, MNLI, SAVI, and MSAVI) was decreased first and then 
increased. Ranking in descending order according to the contribution of 
the different cultivars given JNK728, ZD958, and FK139. Tassels make 
their largest contribution to the SIPI for JNK728 during the middle 
tassel-growth stage (9.73), and their smallest contribution was to the 
MNLI for ZD958 during the end of tassel growth (− 2.99). 

3.3. Effect of tassels on LAI estimation 

The accuracy of LAI estimates was determined by the input variables 
and regression models. Vegetation index, as a commonly used input 
variable, is sensitive to environment in the estimation process. There-
fore, it was necessary to study the effects of different environmental 
datasets on the accuracy of LAI estimation. To investigate how tassels 
affect estimates of the LAI, VIs calculated from the three image cate-
gories (N, H, and E) were used to estimate the LAI using machine 
learning methods (see Section 2.6). In general, the best performance in 
estimating LAI was when using the GBDT, followed by RFR, SVR and 
PLSR. The accuracy of LAI estimates differed for different datasets. 
Ranking the datasets in descending order according to R2 given E im-
ages, N images, and H images. The measured LAI ranged from 0.8 to 6.5. 
PLSR, SVR and RFR have underestimated LAI, and the estimated range 
of LAI was smaller than the measured LAI (Fig. 9). The most accurate LAI 
estimate was estimated by the GBDT method on the E dataset (R2 =

0.816, RMSE = 39.9 % and rRMSE = 7.4 %). The accuracy of the esti-
mated LAI be significantly improved by removing tassels. 

The trait of deep learning is automatic feature extraction. Using the 
DNN method to estimate the LAI from the three datasets and then 
ranking the results in descending order in terms of R2 given the E 
dataset, N dataset, and H dataset (Fig. 10). The VIs extracted from the E 
dataset had the highest accuracy in estimating LAI (R2 = 0.799, RMSE =
41.6 %, rRMSE = 11.2 %). Using DNN model have lower accuracy in 
estimating LAI than the above machine learning methods because deep 
learning requires a larger data than used in this work. In future studies, 

Fig. 5. DNN network structure.  

Table 2 
Accuracy of prediction by UNet.  

Time Metric (%) Encoder structure 

Resnet MobileNet VGG 

T1 CPA  89.31  88.95  89.01 
MIoU  79.92  78.47  81.94 

T2 CPA  89.07  86.96  89.53 
MIoU  85.47  82.94  85.97 

T3 CPA  82.37  76.47  86.82 
MIoU  76.63  73.6  75.5 

Note: T1, T2, and T3 represent early stage tassel growth, middle stage tassel 
growth, and late stage tassel growth. 

Fig. 6. Estimation results of the VGG coding structure of U-Net. Note: Images 
arranged top to bottom correspond to early tassel growth, mid tassel growth, 
and late tassel growth, respectively. 
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the use of the DNN method to estimate the LAI will be further evaluated 
with more data. 

The selection of vegetation indices is complicated and time- 
consuming, and it is limited for single vegetation index to represent 
vegetation information. More vegetation indexes can make full use of 
vegetation information, but it results in some information redundancy. 
Hence, it is critically importance to select the amount of the appropriate 
vegetation indices. To determine how the number of VIs affects the ac-
curacy of LAI estimates, we ranked them in descending order of the 
tassel contribution: MNLI, DVI, TVI, MCARI, EVI, TCARI, MSAVI, 
MTVI2, SAVI, OSAVI, CI, MSR, NDVI_R, RVI1, NDVI, GNDVI, MTCI, 
RVI2, PPR, and SIPI. The VIs extracted from the dataset were sequen-
tially put into the GBDT model to estimate the LAI. Fig. 11 showed that 
the training datasets produced better results than the testing dataset. 
The accurately of LAI estimation became stable when using the 
following nine VIs as variables: MNLI, DVI, TVI, MCARI, EVI, TCARI, 
MSAVI, MTVI2, SAVI, at which the test R2, RMSE and rRMSE of esti-
mated LAI were 0.824, 40.7 % and 10.9 %, respectively. 

4. Discussion 

To improve the accuracy of segmenting tassels in the field, this study 
introduced multispectral datasets. For tassels segmentation, the current 
methods have been based on RGB data, such as HSeg (Tang et al., 2011), 
mTASSEL-S (Lu et al., 2015) and the region-based color model (Lu et al., 
2016) and the recently introduced U-Net model (Shao et al., 2022). But 
the background of tassels is more complex in the field environment, 
which increases the difficulty of the tassels segmentation. Compared 
with RGB images, Multispectral images have more spectral bands, the 
band customization of multispectral sensors requires higher efforts and 
the images have been processed by complex image processing, such as 
correction and alignment processes. Nevertheless, multispectral images 
could provide more spectral information, and the information could 
reflect the growth status of vegetation. Deep learning can automatically 
extract its features, which provided the opportunity to using multi-
spectral images. Hence, we compared the performance of different 
coding structures of the U-Net model using multispectral images. The 
proposed VGG-encoded U-Net model based on multispectral data ach-
ieved better accuracy in tassels segmentation (CPA = 89.53 %, MIoU =
85.97 %), which was better than the accuracy of tassels segmentation 

Fig. 7. Vegetation indices for four types of images and for three cultivars during the three growth stages. Note: T1, T2, and T3 denote the early, middle, and end stage 
of tassel growth, respectively. Labels N, H, E, and T represents images of normal growing tassels, images acquired after removing tassels by hand, the estimation 
image after removing tassels, and images of tassels, respectively. 
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Fig. 8. Contribution of tassels to VIs from multispectral imagery. Note: T1, T2, and T3 represent the early, middle, and end of tassel growth, respectively.  
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based on RGB data (CPA = 82.14 %, MIoU = 84.43 %) (Shao et al., 
2022). Multispectral images can not only identify differences in 
morphology and structure of features, but can also increases tassels 
feature based on differences in spectral characteristics (Kumar et al., 
2021). The VGG16 is the most accurate coding structure in the U-Net 
model, mainly because VGG16 encoding has numerous parameters (24 
M) to detect more complex features. In the present work, the multi-
spectral dataset improves the accuracy of tassel segmentation, which is 
consistent with the findings of Kumar et al. (2021). With the growth of 
maize, the accuracy of the U-Net model for segmenting tassels first was 
increased and then decreased. The reason is that the water content and 
chlorophyll of the tassels are most different from the leaves during the 
T2 period, which contributes to the distinctly different spectrum of the 

tassels from the leaves. In future studies we will further explore the 
reasons for this phenomenon by measuring the differences in water 
content and chlorophyll of tassels and leaves during various growth 
periods. 

To quantify more accurately the contribution of tassels to the canopy 
spectral information, Fig. 12 showed the change in reflectance of the 
image. Tassels contributed more to VIs for the JNK728 cultivar than for 
the ZD958 or FK139 cultivar (Fig. 8). The contribution of the tassels 
varied among maize cultivars, which was mainly attributed to differ-
ences of area (morphological differences: height, size, aggregation, 
tassels length, etc.) and spectral differences of the tassels (Eq.1). The 
change in reflectance of the four types of images was obtained for 
further study of the spectral changes after removal of the tassels 

Fig. 9. Results of estimated LAI. Note: Labels N, H, and E refer to images of normal growing tassels, images with tassels removed by hand, and the estimation image 
after removing tassels. 

Fig. 10. LAI estimated by deep learning model. Note: Labels N, H, and E refer to images of normal growing tassels, images with tassels removed by hand, and the 
estimation image after removing tassels. 
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(Fig. 12). The datasets in descending order of spectral reflectance were 
T, N, E, and H. The tassels enhanced the reflectance of each band, so the 
reflectance was decreased significantly upon removing the tassels. The E 
image was obtained by masking the results of the U-Net model seg-
mentation, whereby the vegetation index calculated from the E image 
excludes the tassels component (Fig. 4). The reflectance (T Images) of 
the tassels was different in each band (Fig. 12), therefore the vegetation 
index calculated from the E images after the removal of the tassels and N 
images of normal growing tassels also differed a certain extent. The 
differences in vegetation index based on the E images were affected by 
two factors: the area of the tassels and the formulas of the vegetation 
index. At the early stages the area of tassels was small, it showed a 
yellowish color and tassels influences the reflectance to a minor extent, 
as the area of the tassels grew larger the tassels influenced the reflec-
tance to a greater extent. The tassels mainly influenced the red-edge 
band (Fig. 12), which resulted in greater variation in NDVI_R, MTCI, 

CI, TCARI, MTCI, MCARI with stage of tassels growth (Fig. 7). Therefore, 
the reflectance of the E image was significantly lower relative to that of 
the N image, which indicated that the segmentation algorithm removes 
the tassels from the image can reduce the effect of tassels on the canopy 
reflectance. However, the present method has some limitations in the 
early stage of the tassels. At the early stages of tassels, the area of the 
tassels was small and the contribution of the tassels to the canopy 
reflectance was little (Figs. 8 and 13). Therefore, the difference between 
the vegetation indices calculated on the basis of image E and image N 
was small at the early stages of tassels growth, the results of the esti-
mated LAI ware not significantly different. The studies of Jin et al. 
(2020b) and Bai et al. (2019) has shown that the difference in water 
content and chlorophyll content of the tassels was leading to the fact that 
the reflectance of the tassels was significantly different from that of 
leaves. The apparent differences in VIs between H images and E images 
are due to (1) the loss of leaves upon manually removing tassels, (2) the 

Fig. 11. Accuracy of estimation of GBDT model as a function of number of VIs.  

Fig. 12. Reflectance of cultivars for different types of images. Note: Labels N, H, E, and T indicate images of normal growth tassels, images with tassels removed by 
hand, the estimation image after removing tassels, and images with tassels, respectively. 
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change in maize canopy structure due to manual error, and (3) the 
changes in chlorophyll content and nitrogen content of maize leaves 
after removal of tassels. Therefore, in future studies, we will quantify 
how the chlorophyll, water content, and nitrogen of leaves and the 
canopy structure vary upon removing the tassels. 

The LAI was estimated by combining machine learning methods and 
VIs extracted from N, H, and E images. The GBDT method for the E 
dataset (R2 = 0.816, RMSE = 39.9 % and rRMSE = 7.4 %) was able to the 
most accurately estimate LAI. The GBDT model was based on the 
boosting algorithm, which can minimize the loss in the prediction pro-
cess (Yang et al., 2021). Hence, the GBDT model has better robustness in 
estimating LAI. The study of Jin et al. (2020a) has shown that DNN 
methods required a large amount of training data to estimate crop pa-
rameters indicating that we need more data to optimize the DNN model 
in follow-up research. Hence, for estimating the LAI, the DNN method 
was slightly less accurate than the GBDT method. Yang et al. (2021) used 
the GBDT method to accurately estimate the leaf nitrogen content, and 
current studies estimated crop parameters by calculating VIs with tassels 
and leaves treated as single integrated objects. However, Bai et al. 
(2019) showed that tassels significantly affect the canopy reflectance in 
the green and red bands, which is consistent with the present results. 
Therefore, the purpose of estimating the LAI using three datasets (N, H 
and E) is to investigate how tassels affect the estimation of the LAI. The 
R2 of image E was significantly improved by 1.2 % and rRMSE was 
decreased by 1.3 % compared with image N (Fig. 9), which indicated 
that removing the tassels using the proposed image algorithm could 
improve the accuracy of LAI estimates. 

A single parameter can only represent limited information about 
crop growth (Xu et al., 2021a), hence the combination of multiple var-
iables should improve the accuracy of estimates of crop parameters. For 
example, Liu et al. (2021) showed that the use of multiple VIs and 
structural indices (e.g., canopy cover, texture information, canopy 
thermal information) enhanced the accuracy of LAI estimates. Xu et al. 
(2021b) used an improved fuzzy comprehensive evaluation method to 

construct a comprehensive yield evaluation indicator from hyper-
spectral data and agronomic parameters, which improves the accuracy 
of yield estimates. However, the challenge in multivariate estimates of 
crop parameters is that information redundancy between VIs often af-
fects calculation time and accuracy. Thus, using an appropriate number 
of VIs is essential. This study identified the nine VIs for estimating LAI by 
contribution of tassels to the canopy. The types of vegetation indices 
include the ratio vegetation index, the difference vegetation index, etc. 
The accuracy of estimating LAI was varied with the type of vegetation 
index was determined without distinguishing the type of vegetation 
index, which would have some limitations (Tan et al., 2013; Morel et al., 
2014; Putzenlechner et al., 2019). For maize, the tassels made up a 
larger percentage of the canopy (Fig. 4). Therefore, this work presented 
a new perspective that determined the number of selected vegetation 
indices for estimating LAI based on the tassel contribution. It is essential 
to combine more crop parameters (agronomic parameters, VI, and tex-
tures) from different regions and the order of different variables to 
improve the robustness of this method, which can provide a technical 
support for crop growth status monitoring in future studies. 

5. Conclusion 

Accurately estimating LAI is important for monitoring maize growth 
status. Tassels spectral information is clearly different from canopy, 
which leads to bias in LAI estimation using canopy spectra. In this study, 
Image-segmentation methods and regression methods (PLSR, SVR, RFR, 
GBDT, DNN) were combined to quantify how tassels affect the VIs and 
the accuracy of estimates of the LAI. The main conclusions are as 
follows:  

(1) The VGG-encoded U-Net model provided the most accurate 
method to segment tassels on the multispectral dataset (CPA =
89.53 %, MIoU = 85.97 %). The accuracy of the segmented tas-
sels was first increased and then decreased with tassel growth. 

Fig. 13. The image of tassels. Note: T1, T2, and T3 represent the early, middle, and end of tassel growth, respectively.  
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(2) Applying the image algorithm for removing tassels significantly 
alleviated the negative effect of tassels on the canopy spectrum. 
In descending order, the VIs contributed to by tassels are MNLI, 
DVI, TVI, MCARI, EVI, TCARI, MSAVI, MTVI2, SAVI, OSAVI, CI, 
MSR, NDVI_R, RVI1, NDVI, GNDVI, MTCI, RVI2, PPR, and SIPI. 
The contribution of tassels to VIs for the JNK728 cultivar was 
greater than that of the ZD958 or FK139 cultivar.  

(3) The most accurate LAI estimates were obtained from the E dataset 
with tassels removed by the image algorithm when using the 
GBDT method (R2 = 0.816, RMSE = 39.9 % and rRMSE = 7.4 %). 
The accuracy of LAI estimates was most stable when using the 
nine VIs selected in order of tassel contributions to VIs. The re-
sults of this study showed the significant potential of multispec-
tral image segmentation of tassels. Removing tassels and 
quantifying the number of VIs can significantly improve the ac-
curacy of LAI estimation. These results provided new perspectives 
and technical references for monitoring crop growth for both 
farmers and researchers. 
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